Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Nonlinear model updating through a hierarchical Bayesian modeling framework

Thumbnail
Author
Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B.
Date
2022
Language
en
DOI
10.1016/j.cma.2022.114646
Keyword
Bayesian networks
Dynamical systems
Errors
Forecasting
Hierarchical systems
Hysteresis
Large dataset
Nonlinear systems
Numerical methods
Time domain analysis
Bouc Wen model
Hierarchical Bayesian modeling
Modeling parameters
Parameter uncertainty
Prediction error uncertainty
Prediction errors
Structural parameter
Structural parameter uncertainty
Time domain response
Uncertainty
Uncertainty analysis
Elsevier B.V.
Metadata display
Abstract
A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. Specifically, probabilistic hyper models are introduced respectively for material hysteretic model parameters as well as prediction error variance parameters, aiming to consider both the uncertainty of the model parameters as well as the prediction error uncertainty due to unmodeled dynamics. A new asymptotic approximation is developed to simplify the process of nonlinear model updating and substantially reduce the computational burden of the HBM framework. This asymptotic approximation is further employed to provide insightful expressions on the hyper parameters for both the model and prediction error variance parameters. Given a large number of data points within a dataset, the hyper model parameters are formulated to be independent of the hyper parameters for prediction error variance parameter. Two numerical examples are conducted to verify the accuracy and performance of the proposed method considering Bouc–Wen (BW) hysteretic type nonlinearities. Model error is manifested as uncertainty due to variability in the measured data from multiple datasets. Results from a five-story numerical structure indicate that the model error is the main source of error that can affect the uncertainty in the model parameters due to the variability in the experimental data. It is also demonstrated that the parameter uncertainty due to the variability arising from model error depends on the sensor locations. It is shown that the proposed approach is robust for not only quantifying uncertainties of structural parameters and prediction error parameters, but also predicting the system quantities of interests (QoI) with reasonable accuracy and providing reliable uncertainty bounds, as opposed to the conventional Bayesian approach which often severely underestimates the uncertainty bounds. © 2022 Elsevier B.V.
URI
http://hdl.handle.net/11615/74113
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories 

    Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)
    This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...
  • Thumbnail

    Bayesian uncertainty quantification for machine-learned models in physics 

    Gal Y., Koumoutsakos P., Lanusse F., Louppe G., Papadimitriou C. (2022)
    Being able to quantify uncertainty when comparing a theoretical or computational model to observations is critical to conducting a sound scientific investigation. With the rise of data-driven modelling, understanding various ...
  • Thumbnail

    Bayesian uncertainty quantification of turbulence models based on high-order adjoint 

    Papadimitriou, D. I.; Papadimitriou, C. (2015)
    The uncertainties in the parameters of turbulence models employed in computational fluid dynamics simulations are quantified using the Bayesian inference framework and analytical approximations. The posterior distribution ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap