Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Bayesian uncertainty quantification of turbulence models based on high-order adjoint

Thumbnail
Author
Papadimitriou, D. I.; Papadimitriou, C.
Date
2015
DOI
10.1016/j.compfluid.2015.07.019
Keyword
Adjoint methods
Bayesian inference
Parameter estimation
Turbulence modeling
Uncertainty quantification
Algorithms
Bayesian networks
Computational fluid dynamics
Covariance matrix
Inference engines
Matrix algebra
Optimization
Reynolds number
Uncertainty analysis
Analytical approximation
Computational fluid dynamics simulations
Propagation of uncertainties
Quasi-Newton optimization
Spalart-Allmaras turbulence model
Uncertainty quantifications
Turbulence models
Metadata display
Abstract
The uncertainties in the parameters of turbulence models employed in computational fluid dynamics simulations are quantified using the Bayesian inference framework and analytical approximations. The posterior distribution of the parameters is approximated by a Gaussian distribution with the most probable value obtained by minimizing the objective function defined by the minus of the logarithm of the posterior distribution. The gradient and the Hessian of the objective function with respect to the parameters are computed using the direct differentiation and the adjoint approach to the flow equations including the turbulence model ones. The Hessian matrix is used both to compute the covariance matrix of the posterior distribution and to initialize the quasi-Newton optimization algorithm used to minimize the objective function. The propagation of uncertainties in output quantities of interest is also presented based on Laplace asymptotic approximations and the adjoint formulation. The proposed method is demonstrated using the Spalart-Allmaras turbulence model parameters in the case of the flat plate flow using DNS data for velocities and the flow through a backward facing step using experimental data for velocities and Reynolds stresses. © 2015 Elsevier Ltd.
URI
http://hdl.handle.net/11615/31697
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A unified sampling-based framework for optimal sensor placement considering parameter and prediction inference 

    Argyris C., Papadimitriou C., Samaey G., Lombaert G. (2021)
    We present a Bayesian framework for model-based optimal sensor placement. Our interest lies in minimizing the uncertainty on predictions of a particular response quantity of interest, with parameter estimation being an ...
  • Thumbnail

    Nonlinear model updating through a hierarchical Bayesian modeling framework 

    Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B. (2022)
    A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. Specifically, ...
  • Thumbnail

    Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories 

    Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)
    This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap