Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Bayesian uncertainty quantification for machine-learned models in physics

Thumbnail
Συγγραφέας
Gal Y., Koumoutsakos P., Lanusse F., Louppe G., Papadimitriou C.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1038/s42254-022-00498-4
Λέξη-κλειδί
Bayesian
Computational modelling
Data-driven model
Model understanding
Scientific investigation
Sources of uncertainty
Theoretical modeling
Uncertainty
Uncertainty quantifications
Uncertainty analysis
Springer Nature
Εμφάνιση Μεταδεδομένων
Επιτομή
Being able to quantify uncertainty when comparing a theoretical or computational model to observations is critical to conducting a sound scientific investigation. With the rise of data-driven modelling, understanding various sources of uncertainty and developing methods to estimate them has gained renewed attention. Five researchers discuss uncertainty quantification in machine-learned models with an emphasis on issues relevant to physics problems. © 2022, Springer Nature Limited.
URI
http://hdl.handle.net/11615/71900
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Nonlinear model updating through a hierarchical Bayesian modeling framework 

    Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B. (2022)
    A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. Specifically, ...
  • Thumbnail

    Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories 

    Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)
    This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...
  • Thumbnail

    Bayesian uncertainty quantification of turbulence models based on high-order adjoint 

    Papadimitriou, D. I.; Papadimitriou, C. (2015)
    The uncertainties in the parameters of turbulence models employed in computational fluid dynamics simulations are quantified using the Bayesian inference framework and analytical approximations. The posterior distribution ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap