Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Machine learning for rhabdomyosarcoma histopathology

Thumbnail
Συγγραφέας
Frankel A.O., Lathara M., Shaw C.Y., Wogmon O., Jackson J.M., Clark M.M., Eshraghi N., Keenen S.E., Woods A.D., Purohit R., Ishi Y., Moran N., Eguchi M., Ahmed F.U.A., Khan S., Ioannou M., Perivoliotis K., Li P., Zhou H., Alkhaledi A., Davis E.J., Galipeau D., Randall R.L., Wozniak A., Schoffski P., Lee C.-J., Huang P.H., Jones R.L., Rubin B.P., Darrow M., Srinivasa G., Rudzinski E.R., Chen S., Berlow N.E., Keller C.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1038/s41379-022-01075-x
Λέξη-κλειδί
adolescent
adult
animal experiment
animal model
animal tissue
Article
cancer model
cancer screening
child
clear cell sarcoma
cohort analysis
controlled study
convolutional neural network
cross validation
deep learning
diagnostic accuracy
diagnostic value
differential diagnosis
embryonal rhabdomyosarcoma
female
genetically engineered mouse strain
histopathology
human
human tissue
infant
machine learning
major clinical study
male
mouse
muscle tissue
newborn
nonhuman
prediction
quantitative analysis
receiver operating characteristic
rhabdomyosarcoma
skeletal muscle
soft tissue sarcoma
tissue section
validation study
animal
embryonal rhabdomyosarcoma
machine learning
pathologist
pathology
young adult
Adolescent
Animals
Child
Humans
Machine Learning
Mice
Neural Networks, Computer
Pathologists
Rhabdomyosarcoma
Rhabdomyosarcoma, Embryonal
Young Adult
Springer Nature
Εμφάνιση Μεταδεδομένων
Επιτομή
Correctly diagnosing a rare childhood cancer such as sarcoma can be critical to assigning the correct treatment regimen. With a finite number of pathologists worldwide specializing in pediatric/young adult sarcoma histopathology, access to expert differential diagnosis early in case assessment is limited for many global regions. The lack of highly-trained sarcoma pathologists is especially pronounced in low to middle-income countries, where pathology expertise may be limited despite a similar rate of sarcoma incidence. To address this issue in part, we developed a deep learning convolutional neural network (CNN)-based differential diagnosis system to act as a pre-pathologist screening tool that quantifies diagnosis likelihood amongst trained soft-tissue sarcoma subtypes based on whole histopathology tissue slides. The CNN model is trained on a cohort of 424 centrally-reviewed histopathology tissue slides of alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma and clear-cell sarcoma tumors, all initially diagnosed at the originating institution and subsequently validated by central review. This CNN model was able to accurately classify the withheld testing cohort with resulting receiver operating characteristic (ROC) area under curve (AUC) values above 0.889 for all tested sarcoma subtypes. We subsequently used the CNN model to classify an externally-sourced cohort of human alveolar and embryonal rhabdomyosarcoma samples and a cohort of 318 histopathology tissue sections from genetically engineered mouse models of rhabdomyosarcoma. Finally, we investigated the overall robustness of the trained CNN model with respect to histopathological variations such as anaplasia, and classification outcomes on histopathology slides from untrained disease models. Overall positive results from our validation studies coupled with the limited worldwide availability of sarcoma pathology expertise suggests the potential of machine learning to assist local pathologists in quickly narrowing the differential diagnosis of sarcoma subtype in children, adolescents, and young adults. © 2022, The Author(s), under exclusive licence to United States & Canadian Academy of Pathology.
URI
http://hdl.handle.net/11615/71805
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Ultrasound application in peripheral nerve localization: Obstacles and learning curve 

    Siasios I.D., Dimopoulos V.G., Fountas K.N., Kapsalaki E. (2017)
    [No abstract available]
  • Thumbnail

    Anatomy Learning from Prosected Cadaveric Specimens Versus Plastic Models: A Comparative Study of Upper Limb Anatomy 

    Mitrousias V., Karachalios T.S., Varitimidis S.E., Natsis K., Arvanitis D.L., Zibis A.H. (2020)
    Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning ...
  • Thumbnail

    Passive strain-induced matrix synthesis and organization in shape-specific, cartilaginous neotissues 

    MacBarb, R. F.; Paschos, N. K.; Abeug, R.; Makris, E. A.; Hu, J. C.; Athanasiou, K. A. (2014)
    Tissue-engineered musculoskeletal soft tissues typically lack the appropriate mechanical robustness of their native counterparts, hindering their clinical applicability. With structure and function being intimately linked, ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap