Εμφάνιση απλής εγγραφής

dc.creatorFrankel A.O., Lathara M., Shaw C.Y., Wogmon O., Jackson J.M., Clark M.M., Eshraghi N., Keenen S.E., Woods A.D., Purohit R., Ishi Y., Moran N., Eguchi M., Ahmed F.U.A., Khan S., Ioannou M., Perivoliotis K., Li P., Zhou H., Alkhaledi A., Davis E.J., Galipeau D., Randall R.L., Wozniak A., Schoffski P., Lee C.-J., Huang P.H., Jones R.L., Rubin B.P., Darrow M., Srinivasa G., Rudzinski E.R., Chen S., Berlow N.E., Keller C.en
dc.date.accessioned2023-01-31T07:38:59Z
dc.date.available2023-01-31T07:38:59Z
dc.date.issued2022
dc.identifier10.1038/s41379-022-01075-x
dc.identifier.issn08933952
dc.identifier.urihttp://hdl.handle.net/11615/71805
dc.description.abstractCorrectly diagnosing a rare childhood cancer such as sarcoma can be critical to assigning the correct treatment regimen. With a finite number of pathologists worldwide specializing in pediatric/young adult sarcoma histopathology, access to expert differential diagnosis early in case assessment is limited for many global regions. The lack of highly-trained sarcoma pathologists is especially pronounced in low to middle-income countries, where pathology expertise may be limited despite a similar rate of sarcoma incidence. To address this issue in part, we developed a deep learning convolutional neural network (CNN)-based differential diagnosis system to act as a pre-pathologist screening tool that quantifies diagnosis likelihood amongst trained soft-tissue sarcoma subtypes based on whole histopathology tissue slides. The CNN model is trained on a cohort of 424 centrally-reviewed histopathology tissue slides of alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma and clear-cell sarcoma tumors, all initially diagnosed at the originating institution and subsequently validated by central review. This CNN model was able to accurately classify the withheld testing cohort with resulting receiver operating characteristic (ROC) area under curve (AUC) values above 0.889 for all tested sarcoma subtypes. We subsequently used the CNN model to classify an externally-sourced cohort of human alveolar and embryonal rhabdomyosarcoma samples and a cohort of 318 histopathology tissue sections from genetically engineered mouse models of rhabdomyosarcoma. Finally, we investigated the overall robustness of the trained CNN model with respect to histopathological variations such as anaplasia, and classification outcomes on histopathology slides from untrained disease models. Overall positive results from our validation studies coupled with the limited worldwide availability of sarcoma pathology expertise suggests the potential of machine learning to assist local pathologists in quickly narrowing the differential diagnosis of sarcoma subtype in children, adolescents, and young adults. © 2022, The Author(s), under exclusive licence to United States & Canadian Academy of Pathology.en
dc.language.isoenen
dc.sourceModern Pathologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128640030&doi=10.1038%2fs41379-022-01075-x&partnerID=40&md5=acf8e372e8128f6c7b42d9d6ed7e8556
dc.subjectadolescenten
dc.subjectadulten
dc.subjectanimal experimenten
dc.subjectanimal modelen
dc.subjectanimal tissueen
dc.subjectArticleen
dc.subjectcancer modelen
dc.subjectcancer screeningen
dc.subjectchilden
dc.subjectclear cell sarcomaen
dc.subjectcohort analysisen
dc.subjectcontrolled studyen
dc.subjectconvolutional neural networken
dc.subjectcross validationen
dc.subjectdeep learningen
dc.subjectdiagnostic accuracyen
dc.subjectdiagnostic valueen
dc.subjectdifferential diagnosisen
dc.subjectembryonal rhabdomyosarcomaen
dc.subjectfemaleen
dc.subjectgenetically engineered mouse strainen
dc.subjecthistopathologyen
dc.subjecthumanen
dc.subjecthuman tissueen
dc.subjectinfanten
dc.subjectmachine learningen
dc.subjectmajor clinical studyen
dc.subjectmaleen
dc.subjectmouseen
dc.subjectmuscle tissueen
dc.subjectnewbornen
dc.subjectnonhumanen
dc.subjectpredictionen
dc.subjectquantitative analysisen
dc.subjectreceiver operating characteristicen
dc.subjectrhabdomyosarcomaen
dc.subjectskeletal muscleen
dc.subjectsoft tissue sarcomaen
dc.subjecttissue sectionen
dc.subjectvalidation studyen
dc.subjectanimalen
dc.subjectembryonal rhabdomyosarcomaen
dc.subjectmachine learningen
dc.subjectpathologisten
dc.subjectpathologyen
dc.subjectyoung adulten
dc.subjectAdolescenten
dc.subjectAnimalsen
dc.subjectChilden
dc.subjectHumansen
dc.subjectMachine Learningen
dc.subjectMiceen
dc.subjectNeural Networks, Computeren
dc.subjectPathologistsen
dc.subjectRhabdomyosarcomaen
dc.subjectRhabdomyosarcoma, Embryonalen
dc.subjectYoung Adulten
dc.subjectSpringer Natureen
dc.titleMachine learning for rhabdomyosarcoma histopathologyen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής