Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

A unified sampling-based framework for optimal sensor placement considering parameter and prediction inference

Thumbnail
Author
Argyris C., Papadimitriou C., Samaey G., Lombaert G.
Date
2021
Language
en
DOI
10.1016/j.ymssp.2021.107950
Keyword
Covariance matrix
Forecasting
Inference engines
Location
Modal analysis
Monte Carlo methods
Probability density function
Structural dynamics
Uncertainty analysis
Bayesian inference
Monte Carlo integration
Optimal sensor placement
Parameter inference
Parameter uncertainty
Prediction uncertainty
Robust predictions
Sensor location
Uncertainty
Uncertainty quantifications
Bayesian networks
Academic Press
Metadata display
Abstract
We present a Bayesian framework for model-based optimal sensor placement. Our interest lies in minimizing the uncertainty on predictions of a particular response quantity of interest, with parameter estimation being an intermediate step for this purpose. By developing a methodology that targets prediction inference rather than parameter inference, we prioritize reduction of uncertainty on the parameters that matter most for the prediction of the actual quantity of interest. Currently available optimal sensor placement methods focus on parameter inference rather than prediction inference and might therefore yield suboptimal solutions for prediction inference. We opt for a unifying framework where the case of parameter inference is merely a special case of prediction inference. Following the Bayesian framework for uncertainty quantification, the model parameters are treated as random variables and their uncertainty before data collection is described by a prior probability density function. The prior uncertainty is updated to the posterior uncertainty using measured data that depends on the chosen sensor locations. This posterior parameter uncertainty is then converted to the posterior prediction uncertainty. As a scalar measure of uncertainty, we use the determinant of the posterior prediction covariance matrix. This is a general type of metric which can be used for both prediction and parameter inference. Using the expectation of this determinant with respect to the distribution of possible data as the objective function, the sensor locations are optimized to minimize the expected parameter or prediction uncertainty. The required covariance matrices of parameters and predictions are evaluated using a Monte Carlo sampling approach. We verify this procedure for a simple test example and present a (simplified) case study from structural dynamics where sensor locations in a modal test are optimized for parameter and prediction inference. We show how the optimal locations for prediction uncertainty differ from those obtained by minimizing parameter uncertainty. In general, the difference will depend on the prior parameter uncertainties, the way the experimental data depend on the parameters, and the way the predictions depend on the parameters. Significant differences will occur when the data as well as the predictions are local in nature and optimizing for prediction inference allows adapting the data such that they are most informative for the relevant parameter subset. © 2021 Elsevier Ltd
URI
http://hdl.handle.net/11615/70783
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Nonlinear model updating through a hierarchical Bayesian modeling framework 

    Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B. (2022)
    A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. Specifically, ...
  • Thumbnail

    Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories 

    Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)
    This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...
  • Thumbnail

    Bayesian uncertainty quantification of turbulence models based on high-order adjoint 

    Papadimitriou, D. I.; Papadimitriou, C. (2015)
    The uncertainties in the parameters of turbulence models employed in computational fluid dynamics simulations are quantified using the Bayesian inference framework and analytical approximations. The posterior distribution ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap