Εμφάνιση απλής εγγραφής

dc.creatorVelentzas P., Vassilakopoulos M., Corral A.en
dc.date.accessioned2023-01-31T10:31:32Z
dc.date.available2023-01-31T10:31:32Z
dc.date.issued2020
dc.identifier.isbn9789897584251
dc.identifier.urihttp://hdl.handle.net/11615/80564
dc.description.abstractThe k Nearest Neighbor (k-NN) algorithm is widely used for classification in several application domains (medicine, economy, entertainment, etc.). Let a group of query points, for each of which we need to compute the k-NNs within a reference dataset to derive the dominating feature class. When the reference points volume is extremely big, it can be proved challenging to deliver low latency results. Furthermore, when the query points are originating from streams, the need for new methods arises to address the computational overhead. We propose and implement two in-memory GPU-based algorithms for the k-NN query, using the CUDA API and the Thrust library. The first one is based on a Brute Force approach and the second one is using heuristics to minimize the reference points near a query point. We also present an extensive experimental comparison against existing algorithms, using synthetic and real datasets. The results show that both of our algorithms outperform these algorithms, in terms of execution time as well as total volume of in-memory reference points that can be handled. © 2020 by SCITEPRESS - Science and Technology Publications, Lda.All rights reserved.en
dc.language.isoenen
dc.sourceGISTAM 2020 - Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Managementen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088360395&partnerID=40&md5=d8efd148c89928eee27c1532ceba23fd
dc.subjectComputation theoryen
dc.subjectGeographic information systemsen
dc.subjectInformation managementen
dc.subjectInformation systemsen
dc.subjectInformation useen
dc.subjectMotion compensationen
dc.subjectNearest neighbor searchen
dc.subjectSystem theoryen
dc.subjectBrute-force approachen
dc.subjectComputational overheadsen
dc.subjectExperimental comparisonen
dc.subjectGPU-based algorithmsen
dc.subjectK Nearest Neighbor (k NN) algorithmen
dc.subjectK-nearest neighborsen
dc.subjectMemory referencesen
dc.subjectReference pointsen
dc.subjectGraphics processing uniten
dc.subjectSciTePressen
dc.titleIn-memory k nearest neighbor GPU-based query processingen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής