Εμφάνιση απλής εγγραφής

dc.creatorPing M., Jia X., Papadimitriou C., Han X., Jiang C.en
dc.date.accessioned2023-01-31T09:50:09Z
dc.date.available2023-01-31T09:50:09Z
dc.date.issued2022
dc.identifier10.1016/j.ymssp.2022.109102
dc.identifier.issn08883270
dc.identifier.urihttp://hdl.handle.net/11615/78229
dc.description.abstractA new Bayesian modeling framework is proposed to account for the uncertainty in the model parameters arising from model and measurements errors, as well as experimental, operational, environmental and manufacturing variabilities. Uncertainty is embedded in the model parameters using a single level hierarchy where the uncertainties are quantified by Normal distributions with the mean and the covariance treated as hyperparameters. Unlike existing hierarchical Bayesian modelling frameworks, the likelihood function for each observed quantity is built based on the Kullback–Leibler divergence used to quantify the discrepancy between the probability density functions (PDFs) of the model predictions and measurements. The likelihood function is constructed assuming that this discrepancy for each measured quantity follows a truncated normal distribution. For Gaussian PDFs of measurements and response predictions, the posterior PDF of the model parameters depends on the lower two moments of the respective PDFs. This representation of the posterior is also used for non-Gaussian PDFs of measurements and model predictions to approximate the uncertainty in the model parameters. The proposed framework can tackle the situation where only PDFs or statistical characteristics are available for measurements. The propagation of uncertainties is accomplished through sampling. Two applications demonstrate the use and effectiveness of the proposed framework. In the first one, structural model parameter inference is considered using simulated statistics for the modal frequencies and mode shapes. In the second one, uncertainties in the parameters of the probabilistic S-N curves used in fatigue are quantified based on experimental data. © 2022 Elsevier Ltden
dc.language.isoenen
dc.sourceMechanical Systems and Signal Processingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129544003&doi=10.1016%2fj.ymssp.2022.109102&partnerID=40&md5=7d3042e8d8bb84e508dcc02428781ba4
dc.subjectBayesian networksen
dc.subjectFatigue of materialsen
dc.subjectForecastingen
dc.subjectInference enginesen
dc.subjectNormal distributionen
dc.subjectParameter estimationen
dc.subjectStructural dynamicsen
dc.subjectUncertainty analysisen
dc.subjectBayesian inferenceen
dc.subjectBayesian modellingen
dc.subjectKullback Leibler divergenceen
dc.subjectLikelihood functionsen
dc.subjectModel predictionen
dc.subjectModeling parametersen
dc.subjectModelling frameworken
dc.subjectStatistic-baseden
dc.subjectUncertaintyen
dc.subjectUncertainty quantification and propagationen
dc.subjectProbability density functionen
dc.subjectAcademic Pressen
dc.titleStatistics-based Bayesian modeling framework for uncertainty quantification and propagationen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής