Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Statistics-based Bayesian modeling framework for uncertainty quantification and propagation

Thumbnail
Συγγραφέας
Ping M., Jia X., Papadimitriou C., Han X., Jiang C.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1016/j.ymssp.2022.109102
Λέξη-κλειδί
Bayesian networks
Fatigue of materials
Forecasting
Inference engines
Normal distribution
Parameter estimation
Structural dynamics
Uncertainty analysis
Bayesian inference
Bayesian modelling
Kullback Leibler divergence
Likelihood functions
Model prediction
Modeling parameters
Modelling framework
Statistic-based
Uncertainty
Uncertainty quantification and propagation
Probability density function
Academic Press
Εμφάνιση Μεταδεδομένων
Επιτομή
A new Bayesian modeling framework is proposed to account for the uncertainty in the model parameters arising from model and measurements errors, as well as experimental, operational, environmental and manufacturing variabilities. Uncertainty is embedded in the model parameters using a single level hierarchy where the uncertainties are quantified by Normal distributions with the mean and the covariance treated as hyperparameters. Unlike existing hierarchical Bayesian modelling frameworks, the likelihood function for each observed quantity is built based on the Kullback–Leibler divergence used to quantify the discrepancy between the probability density functions (PDFs) of the model predictions and measurements. The likelihood function is constructed assuming that this discrepancy for each measured quantity follows a truncated normal distribution. For Gaussian PDFs of measurements and response predictions, the posterior PDF of the model parameters depends on the lower two moments of the respective PDFs. This representation of the posterior is also used for non-Gaussian PDFs of measurements and model predictions to approximate the uncertainty in the model parameters. The proposed framework can tackle the situation where only PDFs or statistical characteristics are available for measurements. The propagation of uncertainties is accomplished through sampling. Two applications demonstrate the use and effectiveness of the proposed framework. In the first one, structural model parameter inference is considered using simulated statistics for the modal frequencies and mode shapes. In the second one, uncertainties in the parameters of the probabilistic S-N curves used in fatigue are quantified based on experimental data. © 2022 Elsevier Ltd
URI
http://hdl.handle.net/11615/78229
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Optimal experimental design for structural health monitoring applications 

    Lam, H. F.; Papadimitriou, C.; Ntotsios, E. (2008)
    Successful structural health monitoring and condition assessment depends to a large extent on the sensor and actuator networks place on the structure as well as the excitation characteristics. An optimal experimental design ...
  • Thumbnail

    The migration of the UTHBAL hydrologic model into OpenMI 

    Loukas, A.; Kokkinos, K.; Vasiliades, L.; Liakopoulos, A. (2008)
    This paper deals with the implementation and the migration into OpenMI of a monthly conceptual hydrological model, called UTHBAL. The model has been developed by Loukas et al. [2003, 2007] and now is implemented under the ...
  • Thumbnail

    Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe 

    Hundecha Y., Sunyer M.A., Lawrence D., Madsen H., Willems P., Bürger G., Kriaučiūnienė J., Loukas A., Martinkova M., Osuch M., Vasiliades L., von Christierson B., Vormoor K., Yücel I. (2016)
    The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap