Εμφάνιση απλής εγγραφής

dc.creatorDelibasis K., Maglogiannis I., Georgakopoulos S., Kottari K., Plagianakos V.en
dc.date.accessioned2023-01-31T07:52:55Z
dc.date.available2023-01-31T07:52:55Z
dc.date.issued2018
dc.identifier10.1007/978-3-030-01418-6_19
dc.identifier.isbn9783030014179
dc.identifier.issn03029743
dc.identifier.urihttp://hdl.handle.net/11615/73180
dc.description.abstractConvolutional Neural Networks (CNNs) have been proven very effective in image classification and object recognition tasks, often exceeding the performance of traditional image analysis techniques. However, training a CNN requires very extensive datasets, as well as very high computational burden. In this work, we test the hypothesis that if the input includes the responses of established image analysis filters that detect salient image structures, the CNN should be able to perform better than an identical CNN fed with the plain RGB images only. Thus, we employ a number of families of image analysis filter banks and use their responses to compile a small number of filtered responses for each original RGB image. We perform a large number of CNN training/testing repetitions for a 40-class building recognition problem, on a publicly available image database, using the original images, as well as the original images augmented by the compiled filter responses. Results show that the accuracy achieved by the CNN with the augmented input is consistently higher than that of the RGB image input, both in terms of different repetitions of the execution, as well as throughout the iterations of each repetition. © Springer Nature Switzerland AG 2018.en
dc.language.isoenen
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054869972&doi=10.1007%2f978-3-030-01418-6_19&partnerID=40&md5=1b095861974905666cd950715dbc3eb2
dc.subjectConvolutionen
dc.subjectDeep learningen
dc.subjectFilter banksen
dc.subjectImage classificationen
dc.subjectNeural networksen
dc.subjectObject recognitionen
dc.subjectAugmented inputen
dc.subjectBuilding recognitionen
dc.subjectComputational burdenen
dc.subjectConvolutional neural networken
dc.subjectFilter responseen
dc.subjectImage analysis techniquesen
dc.subjectImage Structuresen
dc.subjectOriginal imagesen
dc.subjectImage analysisen
dc.subjectSpringer Verlagen
dc.titleAssessing image analysis filters as augmented input to convolutional neural networks for image classificationen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής