Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Assessing image analysis filters as augmented input to convolutional neural networks for image classification

Thumbnail
Συγγραφέας
Delibasis K., Maglogiannis I., Georgakopoulos S., Kottari K., Plagianakos V.
Ημερομηνία
2018
Γλώσσα
en
DOI
10.1007/978-3-030-01418-6_19
Λέξη-κλειδί
Convolution
Deep learning
Filter banks
Image classification
Neural networks
Object recognition
Augmented input
Building recognition
Computational burden
Convolutional neural network
Filter response
Image analysis techniques
Image Structures
Original images
Image analysis
Springer Verlag
Εμφάνιση Μεταδεδομένων
Επιτομή
Convolutional Neural Networks (CNNs) have been proven very effective in image classification and object recognition tasks, often exceeding the performance of traditional image analysis techniques. However, training a CNN requires very extensive datasets, as well as very high computational burden. In this work, we test the hypothesis that if the input includes the responses of established image analysis filters that detect salient image structures, the CNN should be able to perform better than an identical CNN fed with the plain RGB images only. Thus, we employ a number of families of image analysis filter banks and use their responses to compile a small number of filtered responses for each original RGB image. We perform a large number of CNN training/testing repetitions for a 40-class building recognition problem, on a publicly available image database, using the original images, as well as the original images augmented by the compiled filter responses. Results show that the accuracy achieved by the CNN with the augmented input is consistently higher than that of the RGB image input, both in terms of different repetitions of the execution, as well as throughout the iterations of each repetition. © Springer Nature Switzerland AG 2018.
URI
http://hdl.handle.net/11615/73180
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap