Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions

Thumbnail
Συγγραφέας
Fostiropoulos S., Strotos G., Nikolopoulos N., Gavaises M.
Ημερομηνία
2020
Γλώσσα
en
DOI
10.1016/j.fuel.2020.118381
Λέξη-κλειδί
Aerodynamics
Emulsification
Explosives
Fuel oils
Navier Stokes equations
Ostwald ripening
Petroleum transportation
Phase interfaces
Breakup mechanisms
Explosive boiling
Fixed temperature
Incompressible Navier-Stokes
Local temperature
Numerical investigations
Phenomenological modeling
Transport equation
Drop breakup
Elsevier Ltd
Εμφάνιση Μεταδεδομένων
Επιτομή
The heating and explosive boiling leading to fragmentation of immiscible heavy fuel oil-water droplets, termed as W/HFO emulsions, is predicted numerically by solving the incompressible Navier-Stokes and energy equations alongside with a set of three VoF transport equations separating the interface of co-existing HFO, water liquid and water vapour fluid phases. Model predictions suggest that explosive boiling of the water inside the surrounding HFO, ought to their different boiling points, accelerates droplet breakup; this process is termed as either puffing or micro-explosion. In contrast to past studies which predefine the presence of vapor bubbles inside the water droplet, this is predicted here with a phenomenological model based on local temperature and superheat degree. Following their formation, the growth rate of the bubbles is computed with OCASIMAT phase-change algorithm. Moreover, the fuel droplet is simultaneously subjected to convective air flow which further contributes to its deformation. As a result, the performed simulations quantify the relative time scales of the aerodynamic-induced and the emulsion-induced breakup mechanisms. The conditions examined refer to a highly viscous emulsified heavy fuel oil droplet in a gas phase having fixed temperature and pressure equal to 1000 K and 30 bar, respectively. Initially, a benchmark case demonstrates the detailed mechanisms taking place, concluding that droplet fragmentation occurs only at a part of the fuel-air interface, resembling characteristics similar to puffing. Next, a parametric study with Weber number (Oh=0.9,We<200) shows that puffing process can speed up to 10 times the breakup of the droplet relative to aerodynamic breakup. © 2020 Elsevier Ltd
URI
http://hdl.handle.net/11615/71666
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap