Εμφάνιση απλής εγγραφής

dc.creatorFostiropoulos S., Strotos G., Nikolopoulos N., Gavaises M.en
dc.date.accessioned2023-01-31T07:38:21Z
dc.date.available2023-01-31T07:38:21Z
dc.date.issued2020
dc.identifier10.1016/j.fuel.2020.118381
dc.identifier.issn00162361
dc.identifier.urihttp://hdl.handle.net/11615/71666
dc.description.abstractThe heating and explosive boiling leading to fragmentation of immiscible heavy fuel oil-water droplets, termed as W/HFO emulsions, is predicted numerically by solving the incompressible Navier-Stokes and energy equations alongside with a set of three VoF transport equations separating the interface of co-existing HFO, water liquid and water vapour fluid phases. Model predictions suggest that explosive boiling of the water inside the surrounding HFO, ought to their different boiling points, accelerates droplet breakup; this process is termed as either puffing or micro-explosion. In contrast to past studies which predefine the presence of vapor bubbles inside the water droplet, this is predicted here with a phenomenological model based on local temperature and superheat degree. Following their formation, the growth rate of the bubbles is computed with OCASIMAT phase-change algorithm. Moreover, the fuel droplet is simultaneously subjected to convective air flow which further contributes to its deformation. As a result, the performed simulations quantify the relative time scales of the aerodynamic-induced and the emulsion-induced breakup mechanisms. The conditions examined refer to a highly viscous emulsified heavy fuel oil droplet in a gas phase having fixed temperature and pressure equal to 1000 K and 30 bar, respectively. Initially, a benchmark case demonstrates the detailed mechanisms taking place, concluding that droplet fragmentation occurs only at a part of the fuel-air interface, resembling characteristics similar to puffing. Next, a parametric study with Weber number (Oh=0.9,We<200) shows that puffing process can speed up to 10 times the breakup of the droplet relative to aerodynamic breakup. © 2020 Elsevier Ltden
dc.language.isoenen
dc.sourceFuelen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086511892&doi=10.1016%2fj.fuel.2020.118381&partnerID=40&md5=4809af40ad16734375c2bd312ba6015d
dc.subjectAerodynamicsen
dc.subjectEmulsificationen
dc.subjectExplosivesen
dc.subjectFuel oilsen
dc.subjectNavier Stokes equationsen
dc.subjectOstwald ripeningen
dc.subjectPetroleum transportationen
dc.subjectPhase interfacesen
dc.subjectBreakup mechanismsen
dc.subjectExplosive boilingen
dc.subjectFixed temperatureen
dc.subjectIncompressible Navier-Stokesen
dc.subjectLocal temperatureen
dc.subjectNumerical investigationsen
dc.subjectPhenomenological modelingen
dc.subjectTransport equationen
dc.subjectDrop breakupen
dc.subjectElsevier Ltden
dc.titleNumerical investigation of heavy fuel oil droplet breakup enhancement with water emulsionsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής