Εμφάνιση απλής εγγραφής

dc.creatorAnagnostou P., Barbas P., Vrahatis A.G., Tasoulis S.K.en
dc.date.accessioned2023-01-31T07:31:21Z
dc.date.available2023-01-31T07:31:21Z
dc.date.issued2020
dc.identifier10.1109/BigData50022.2020.9378126
dc.identifier.isbn9781728162515
dc.identifier.urihttp://hdl.handle.net/11615/70530
dc.description.abstractWe are in the era where the Big Data analytics has changed the way of interpreting the various biomedical phenomena, and as the generated data increase, the need for new machine learning methods to handle this evolution grows. An indicative example is the single-cell RNA-seq (scRNA-seq), an emerging DNA sequencing technology with promising capabilities but significant computational challenges due to the large-scaled generated data. Regarding the classification process for scRNA-seq data, an appropriate method is the k Nearest Neighbor (kNN) classifier since it is usually utilized for large-scale prediction tasks due to its simplicity, minimal parameterization, and model-free nature. However, the ultra-high dimensionality that characterizes scRNA-seq impose a computational bottleneck, while prediction power can be affected by the "Curse of Dimensionality". In this work, we proposed the utilization of approximate nearest neighbor search algorithms for the task of kNN classification in scRNA-seq data focusing on a particular methodology tailored for high dimensional data. We argue that even relaxed approximate solutions will not affect the prediction performance significantly. The experimental results confirm the original assumption by offering the potential for broader applicability. © 2020 IEEE.en
dc.language.isoenen
dc.sourceProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103853684&doi=10.1109%2fBigData50022.2020.9378126&partnerID=40&md5=92439dd52cc68d4c13dfd8491248f02c
dc.subjectAdvanced Analyticsen
dc.subjectBig dataen
dc.subjectClustering algorithmsen
dc.subjectData Analyticsen
dc.subjectDNA sequencesen
dc.subjectForecastingen
dc.subjectGene encodingen
dc.subjectLearning algorithmsen
dc.subjectLearning systemsen
dc.subjectNearest neighbor searchen
dc.subjectClassification processen
dc.subjectComputational bottlenecksen
dc.subjectComputational challengesen
dc.subjectCurse of dimensionalityen
dc.subjectK-nearest neighbor classifiers (KNN)en
dc.subjectLarge-scale predictionen
dc.subjectMachine learning methodsen
dc.subjectPrediction performanceen
dc.subjectClassification (of information)en
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleApproximate kNN Classification for Biomedical Dataen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής