Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Approximate kNN Classification for Biomedical Data

Thumbnail
Author
Anagnostou P., Barbas P., Vrahatis A.G., Tasoulis S.K.
Date
2020
Language
en
DOI
10.1109/BigData50022.2020.9378126
Keyword
Advanced Analytics
Big data
Clustering algorithms
Data Analytics
DNA sequences
Forecasting
Gene encoding
Learning algorithms
Learning systems
Nearest neighbor search
Classification process
Computational bottlenecks
Computational challenges
Curse of dimensionality
K-nearest neighbor classifiers (KNN)
Large-scale prediction
Machine learning methods
Prediction performance
Classification (of information)
Institute of Electrical and Electronics Engineers Inc.
Metadata display
Abstract
We are in the era where the Big Data analytics has changed the way of interpreting the various biomedical phenomena, and as the generated data increase, the need for new machine learning methods to handle this evolution grows. An indicative example is the single-cell RNA-seq (scRNA-seq), an emerging DNA sequencing technology with promising capabilities but significant computational challenges due to the large-scaled generated data. Regarding the classification process for scRNA-seq data, an appropriate method is the k Nearest Neighbor (kNN) classifier since it is usually utilized for large-scale prediction tasks due to its simplicity, minimal parameterization, and model-free nature. However, the ultra-high dimensionality that characterizes scRNA-seq impose a computational bottleneck, while prediction power can be affected by the "Curse of Dimensionality". In this work, we proposed the utilization of approximate nearest neighbor search algorithms for the task of kNN classification in scRNA-seq data focusing on a particular methodology tailored for high dimensional data. We argue that even relaxed approximate solutions will not affect the prediction performance significantly. The experimental results confirm the original assumption by offering the potential for broader applicability. © 2020 IEEE.
URI
http://hdl.handle.net/11615/70530
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap