Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Quantification of normal CSF flow through the aqueduct using PC-Cine MRI at 3T

Thumbnail
Author
Kapsalaki, E.; Svolos, P.; Tsougos, I.; Theodorou, K.; Fezoulidis, I.; Fountas, K. N.
Date
2012
DOI
10.1007/978-3-7091-0923-6_8
Keyword
3 T
Aqueduct
CSF flow
Hydrocephalus
PC Cine MRI
Velocity
adult
article
brain aqueduct
cerebrospinal fluid examination
cerebrospinal fluid flow
controlled study
flow rate
human
human experiment
hydrodynamics
normal human
nuclear magnetic resonance imaging
brain ventricle
cerebrospinal fluid
computer assisted diagnosis
female
male
physiology
Cerebral Aqueduct
Cerebral Ventricles
Diagnosis, Computer-Assisted
Humans
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine
Young Adult
Metadata display
Abstract
Quantification of cerebrospinal fluid (CSF) flow through the cerebral aqueduct is of paramount importance in patients with hydrocephalus. The purpose of this study was to evaluate the normal CSF flow measurements at three different anatomical levels of the aqueduct utilizing 3-Tesla (3 T) magnetic resonance imaging. Materials and methods: The CSF hydrodynamics in 22 healthy volunteers were evaluated. Phase-contrast cine MRI was performed on a 3 T General Electric MR system (GE Medical Systems, Milwaukee, WI, USA). A cardiac-gated, flow-compensated GRE sequence with flow encoding was used, and the aqueduct was visualized using a sagittal T1 FLAIR sequence. Velocity maps were acquired at three different anatomical levels. Region-of-interest (ROI) analysis was performed. Results: CSF flow velocities were slightly increased at the upper in comparison with the lower part of the aqueduct. The mean values for the peak positive and negative velocity and the mean average flow were calculated for both ROIs. Discussion/Conclusions: CSF peak positive velocity, peak negative velocity, and mean flow through the aqueduct were calculated in 22 young healthy volunteers performed at 3 T. Our measurements did not show significant difference compared with the reported measurements obtained at 1.5 T. Slight differences were observed in the CSF hydrodynamic measurements, depending on the anatomical level of the aqueduct; however, they did not vary significantly.
URI
http://hdl.handle.net/11615/28896
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19705]
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
htmlmap