Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Day-ahead electricity price forecasting using optimized multiple-regression of relevance vector machines

Thumbnail
Συγγραφέας
Alamaniotis, M.; Ikonomopoulos, A.; Alamaniotis, A.; Bargiotas, D.; Tsoukalas, L. H.
Ημερομηνία
2012
DOI
10.1049/cp.2012.2023
Λέξη-κλειδί
Electricity price forecasting
Multiple-regression
Relevance vector machines
Electricity market
Electricity prices
Intelligent forecasting
Multiple regression model
Regression coefficient
Relevance Vector Machine
Costs
Electric load forecasting
Electric power generation
Energy conversion
Optimization
Regression analysis
Εμφάνιση Μεταδεδομένων
Επιτομή
In deregulated, auction-based, electricity markets price forecasting is an essential participant tool for developing bidding strategies. In this paper, a day-ahead intelligent forecasting method for electricity prices is presented. The proposed approach is comprised of two steps. In the first step, a set of two relevance vector machines (RVM) is employed where each one provides next day predictions for the price evolution. In the second step, a multiple regression model comprised of the two relevance vector machines is built and the regression coefficients are computed using genetic based optimization. The performance of the proposed approach is tested on a set of electricity price hourly data from four different seasons and compared to those obtained by each of the relevance vector machines. The results clearly demonstrate, in terms of mean square error, the superiority of the proposed method over each individual RVM.
URI
http://hdl.handle.net/11615/25429
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Estimating downlink throughput from end-user measurements in mobile broadband networks 

    Kousias K., Alay O., Argyriou A., Lutu A., Riegler M. (2019)
    In recent years, Downlink (DL)throughput estimation in Mobile Broadband (MBB)networks has gained immense popularity and it is expected to become a vital component of the upcoming fifth generation (5G)systems. Plentiful ...
  • Thumbnail

    Improved hybrid blind IQA using alternative NSS characterization in the spatial domain 

    Mairgiotis A., Tsampra D., Kondi L.P. (2021)
    The adoption of a Natural Scene Statistics (NSS) model has been an important research direction in the selection of perceptual features capable of giving satisfactory results in the problem of image quality assessment ...
  • Thumbnail

    Error Compensation Enhanced Day-Ahead Electricity Price Forecasting 

    Kontogiannis D., Bargiotas D., Daskalopulu A., Arvanitidis A.I., Tsoukalas L.H. (2022)
    The evolution of electricity markets has led to increasingly complex energy trading dynamics and the integration of renewable energy sources as well as the influence of several external market factors contributed towards ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap