Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Estimating downlink throughput from end-user measurements in mobile broadband networks

Thumbnail
Συγγραφέας
Kousias K., Alay O., Argyriou A., Lutu A., Riegler M.
Ημερομηνία
2019
Γλώσσα
en
DOI
10.1109/WoWMoM.2019.8792968
Λέξη-κλειδί
5G mobile communication systems
Decision trees
Linear regression
Machine learning
Quality of service
Supervised learning
Down links
Mobile broadband
Multiple linear regressions
Random forests
Support vector regression (SVR)
Broadband networks
Institute of Electrical and Electronics Engineers Inc.
Εμφάνιση Μεταδεδομένων
Επιτομή
In recent years, Downlink (DL)throughput estimation in Mobile Broadband (MBB)networks has gained immense popularity and it is expected to become a vital component of the upcoming fifth generation (5G)systems. Plentiful adaptive video streaming algorithms greatly rely on accurate DL throughput predictions to adapt their mechanisms and ensure high Quality of Service (QoS)to the end-users. Thus far, conventional DL throughput estimation approaches, also known as speed tests, require an extensive exchange of TCP traffic over the network for an allocated time duration. While such tools appear to deliver trustworthy results, they turn out to be inefficient when mobile subscriptions with limited data plans are engaged. In this paper, we propose a supervised Machine Learning (ML)solution for DL throughput estimation that aims at delivering highly accurate predictions while significantly limiting the over-the-air data consumption. We capture the network performance metrics by exploring both crowdsourced and controlled testing methodologies. We leverage RTR-NetTest, a platform of broadband measurements provided by the Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR), and MONROE-NetTest, its counterpart wrapper built as an Experiment as a Service (EaaS)on top of Measuring Mobile Broadband Networks in Europe (MONROE). Results reveal that our solution can achieve a 39.7% reduction in terms of data consumption while delivering a Median Absolute Percentage Error (MdAPE)of 5.55%. We further show that accuracy can be traded-off, for example, a significant data consumption reduction of 95.15 % can be achieved for a MdAPE of 20%. © 2019 IEEE.
URI
http://hdl.handle.net/11615/75357
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap