Εμφάνιση απλής εγγραφής

dc.creatorZhang Y., Liu Y., Liu J., Miao J., Argyriou A., Wang L., Xu Z.en
dc.date.accessioned2023-01-31T11:38:26Z
dc.date.available2023-01-31T11:38:26Z
dc.date.issued2022
dc.identifier10.1109/CVPR52688.2022.01461
dc.identifier.isbn9781665469463
dc.identifier.issn10636919
dc.identifier.urihttp://hdl.handle.net/11615/80977
dc.description.abstractThe application of deep neural networks (DNNs) on 360-degree images has achieved remarkable progress in the recent years. However, DNNs have been demonstrated to be vulnerable to well-crafted adversarial examples, which may trigger severe safety problems in the real-world applications based on 360-degree images. In this paper, we propose an adversarial attack targeting spherical images, called 360-attactk, that transfers adversarial perturbations from perspective-view (PV) images to a final adversarial spherical image. Given a target spherical image, we first represent it with a set of planar PV images, and then perform 2D attacks on them to obtain adversarial PV images. Considering the issue of the projective distortion between spherical and PV images, we propose a distortion-aware attack to reduce the negative impact of distortion on attack. Moreover, to reconstruct the final adversarial spherical image with high aggressiveness, we calculate the spherical saliency map with a novel spherical spectrum method and next propose a saliency-aware fusion strategy that merges multiple inverse perspective projections for the same position on the spherical image. Extensive experimental results show that 360-attack is effective for disturbing spherical images in the black-box setting. Our attack also proves the presence of adversarial transferability from Z2 to SO(3) groups. © 2022 IEEE.en
dc.language.isoenen
dc.sourceProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognitionen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85143047127&doi=10.1109%2fCVPR52688.2022.01461&partnerID=40&md5=ffa1f9c74f278f3ac42eab7a9bc836a8
dc.subjectComputer visionen
dc.subjectSpheresen
dc.subjectAdversarial attack and defenseen
dc.subjectGrouping and shape analyseen
dc.subjectPerspective viewsen
dc.subjectReal-worlden
dc.subjectSafety problemsen
dc.subjectScene analysisen
dc.subjectScene understandingen
dc.subjectSegmentationen
dc.subjectShape-analysisen
dc.subjectSpherical imagesen
dc.subjectDeep neural networksen
dc.subjectIEEE Computer Societyen
dc.title360-Attack: Distortion-Aware Perturbations from Perspective-Viewsen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής