Εμφάνιση απλής εγγραφής

dc.creatorZhang B., Shan J., Wang W., Tsiakaras P., Li Y.en
dc.date.accessioned2023-01-31T11:38:24Z
dc.date.available2023-01-31T11:38:24Z
dc.date.issued2022
dc.identifier10.1002/smll.202106012
dc.identifier.issn16136810
dc.identifier.urihttp://hdl.handle.net/11615/80971
dc.description.abstractConstructing cost-efficient and robust bifunctional electrocatalysts for both neutral and alkaline water splitting is highly desired, but still affords a great challenge, due to sluggish hydrogen/oxygen evolution reaction (HER/OER) kinetics. Herein, an in situ integration engineering strategy of oxygen-vacancy and core–shell heterojunction to fabricate an anemone-like CoP@CoOOH core–shell heterojunction with rich oxygen-vacancies supported on carbon paper (CoP@CoOOH/CP), is described. Benefiting from the synergy of CoP core and oxygen-vacancy-rich CoOOH shell, the as-obtained CoP@CoOOH/CP catalyst displays low overpotentials at 10 mA cm-2 for HER (89.6 mV/81.7 mV) and OER (318 mV/200 mV) in neutral and alkaline media, respectively. Notably, a two-electrode electrolyzer, using CoP@CoOOH/CP as bifunctional catalyst to achieve 10 mA cm-2, only needs low-cell voltages in neutral (1.65 V) and alkaline (1.52 V) electrolyte. Besides, systematically experimental and theoretical results reveal that the core–shell heterojunction efficiently accelerates the catalytic kinetics and strengthens the structural stability, while rich oxygen-vacancies efficiently decrease the kinetic barrier and activation energy, and reduce the energy barrier of the rate-determining-step for OER intermediates, thus intrinsically boosting OER performance. This work clearly demonstrates that oxygen-vacancy and core–shell heterojunction engineering provide an effective strategy to design highly-efficient non-precious, bi-functional electrocatalysts for pH-universal water splitting. © 2022 Wiley-VCH GmbH.en
dc.language.isoenen
dc.sourceSmallen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123492377&doi=10.1002%2fsmll.202106012&partnerID=40&md5=932b85f6097a0120e13470d15db3245b
dc.subjectAlkalinityen
dc.subjectElectrocatalystsen
dc.subjectElectrolysisen
dc.subjectElectrolytesen
dc.subjectHeterojunctionsen
dc.subjectKineticsen
dc.subjectOxygen vacanciesen
dc.subjectReaction kineticsen
dc.subjectShells (structures)en
dc.subjectStabilityen
dc.subjectAlkaline wateren
dc.subjectBifunctional electrocatalystsen
dc.subjectCarbon paperen
dc.subjectCore-shell heterojunctionsen
dc.subjectCost-efficienten
dc.subjectNeutral mediumen
dc.subjectNeutral wateren
dc.subjectOverpotentialen
dc.subjectWater splittingen
dc.subject]+ catalysten
dc.subjectActivation energyen
dc.subjectJohn Wiley and Sons Incen
dc.titleOxygen Vacancy and Core–Shell Heterojunction Engineering of Anemone-Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splittingen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής