Εμφάνιση απλής εγγραφής

dc.creatorYan W.-J., Chronopoulos D., Cantero-Chinchilla S., Yuen K.-V., Papadimitriou C.en
dc.date.accessioned2023-01-31T11:37:47Z
dc.date.available2023-01-31T11:37:47Z
dc.date.issued2020
dc.identifier10.1016/j.ymssp.2020.106802
dc.identifier.issn08883270
dc.identifier.urihttp://hdl.handle.net/11615/80867
dc.description.abstractReliable verification and evaluation of the mechanical properties of a layered composite ensemble are critical for industrially relevant applications, however it still remains an open engineering challenge. In this study, a fast Bayesian inference scheme based on multi-frequency single shot measurements of wave propagation characteristics is developed to overcome the limitations of ill-conditioning and non-uniqueness associated with the conventional approaches. A Transitional Markov chain Monte Carlo (TMCMC) algorithm is employed for the sampling process. A Wave and Finite Element (WFE)-assisted metamodeling scheme in lieu of expensive-to-evaluate explicit FE analysis is proposed to cope with the high computational cost involved in TMCMC sampling. For this, the Kriging predictor providing a surrogate mapping between the probability spaces of the model predictions for the wave characteristics and the mechanical properties in the likelihood evaluations is established based on the training outputs computed using a WFE forward solver, coupling periodic structure theory to conventional FE. The valuable uncertainty information of the prediction variance introduced by the use of a surrogate model is also properly taken into account when estimating the parameters’ posterior probability distribution by TMCMC. A numerical study as well as an experimental study are conducted to verify the computational efficiency and accuracy of the proposed methodology. Results show that the TMCMC algorithm in conjunction with the WFE forward solver-aided metamodeling can sample the posterior Probability Density Function (PDF) of the updated parameters at a very reasonable cost. This approach is capable of quantifying the uncertainties of recovered independent characteristics for each layer of the composite structure under investigation through fast and inexpensive experimental measurements on localized portions of the structure. © 2020 Elsevier Ltden
dc.language.isoenen
dc.sourceMechanical Systems and Signal Processingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082796568&doi=10.1016%2fj.ymssp.2020.106802&partnerID=40&md5=6d24436f772b2ecdbc3be7a3ac71ee31
dc.subjectBayesian networksen
dc.subjectComposite structuresen
dc.subjectComputation theoryen
dc.subjectComputational efficiencyen
dc.subjectCost benefit analysisen
dc.subjectFinite element methoden
dc.subjectGuided electromagnetic wave propagationen
dc.subjectInference enginesen
dc.subjectMarkov chainsen
dc.subjectMechanical propertiesen
dc.subjectProbability density functionen
dc.subjectProbability distributionsen
dc.subjectStructure (composition)en
dc.subjectUltrasonic wavesen
dc.subjectUncertainty analysisen
dc.subjectBayesian Analysisen
dc.subjectLocal structural propertiesen
dc.subjectMarkov Chain Monte-Carloen
dc.subjectMetamodelingen
dc.subjectPeriodic structure theoryen
dc.subjectUltrasonic guided waveen
dc.subjectUncertainty quantificationsen
dc.subjectWave propagation characteristicsen
dc.subjectParameter estimationen
dc.subjectAcademic Pressen
dc.titleA fast Bayesian inference scheme for identification of local structural properties of layered composites based on wave and finite element-assisted metamodeling strategy and ultrasound measurementsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής