Εμφάνιση απλής εγγραφής

dc.creatorVidakis N., Petousis M., Mountakis N., Maravelakis E., Zaoutsos S., Kechagias J.D.en
dc.date.accessioned2023-01-31T11:36:51Z
dc.date.available2023-01-31T11:36:51Z
dc.date.issued2022
dc.identifier10.1007/s00170-022-09376-w
dc.identifier.issn02683768
dc.identifier.urihttp://hdl.handle.net/11615/80618
dc.description.abstractThis study investigates the mechanical response of antibacterial PA12/TiO2 nanocomposite 3D printed specimens by varying the TiO2 loading in the filament, raster deposition angle, and nozzle temperature. The prediction of the antibacterial and mechanical performance of such nanocomposites is a challenging field, especially nowadays with the covid-19 pandemic dilemma. The experimental work in this study utilizes a fully factorial design approach to analyze the effect of three parameters on the mechanical response of 3D printed components. Therefore, all combinations of these three parameters were tested, resulting in twenty-seven independent experiments, in which each combination was repeated three times (a total of eighty-one experiments). The antibacterial performance of the fabricated PA12/TiO2 nanocomposite materials was confirmed, and regression and arithmetic artificial neural network (ANN) models were developed and validated for mechanical response prediction. The analysis of the results showed that an increase in the TiO2% loading decreased the mechanical responses but increased the antibacterial performance of the nanocomposites. In addition, higher nozzle temperatures and zero deposition angles optimize the mechanical performance of all TiO2% nanocomposites. Independent experiments evaluated the proposed models with mean absolute percentage errors (MAPE) similar to the ANN models. These findings and the interaction charts show a strong interaction between the studied parameters. Therefore, the authors propose the improvement of predictions by utilizing artificial neural network models and genetic algorithms as future work and the spreading of the experimental area with extra variable parameters and levels. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.en
dc.language.isoenen
dc.sourceInternational Journal of Advanced Manufacturing Technologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85130281397&doi=10.1007%2fs00170-022-09376-w&partnerID=40&md5=3f9c7cf1c100282c9a6490ea6df2567f
dc.subject3D printersen
dc.subjectDepositionen
dc.subjectFabricationen
dc.subjectForecastingen
dc.subjectGenetic algorithmsen
dc.subjectNanocompositesen
dc.subjectNeural networksen
dc.subjectNozzlesen
dc.subjectTiO2 nanoparticlesen
dc.subject3-D printingen
dc.subject3D-printingen
dc.subjectAntibacterialsen
dc.subjectArtificial neural networken
dc.subjectArtificial neural network modelingen
dc.subjectFused filament fabricationen
dc.subjectMechanical responseen
dc.subjectPoly-amide 12en
dc.subjectPolyamide 12en
dc.subjectTitania dioxide (TiO2)en
dc.subjectTitanium dioxideen
dc.subjectSpringer Science and Business Media Deutschland GmbHen
dc.titleMechanical response assessment of antibacterial PA12/TiO2 3D printed parts: parameters optimization through artificial neural networks modelingen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής