dc.creator | Vasileiadis S., Puglisi E., Papadopoulou E.S., Pertile G., Suciu N., Pappolla R.A., Tourna M., Karas P.A., Papadimitriou F., Kasiotakis A., Ipsilanti N., Ferrarini A., Sulowicz S., Fornasier F., Menkissoglu-Spiroudi U., Nicol G.W., Trevisan M., Karpouzas D.G. | en |
dc.date.accessioned | 2023-01-31T10:27:44Z | |
dc.date.available | 2023-01-31T10:27:44Z | |
dc.date.issued | 2018 | |
dc.identifier | 10.1128/AEM.01536-18 | |
dc.identifier.issn | 00992240 | |
dc.identifier.uri | http://hdl.handle.net/11615/80448 | |
dc.description.abstract | Pesticides are key stressors of soil microorganisms with reciprocal effects on ecosystem functioning. These effects have been mainly attributed to the parent compounds, while the impact of their transformation products (TPs) has been largely overlooked. We assessed in a meadow soil (soil A) the transformation of iprodione and its toxicity in relation to (i) the abundance of functional microbial groups, (ii) the activity of key microbial enzymes, and (iii) the diversity of bacteria, fungi, and ammonia-oxidizing microorganisms (AOM) using amplicon sequencing. 3,5-Dichloroaniline (3,5-DCA), the main iprodione TP, was identified as a key explanatory factor for the persistent reduction in enzymatic activities and potential nitrification (PN) and for the observed structural changes in the bacterial and fungal communities. The abundances of certain bacterial (Actinobacteria, Hyphomicrobiaceae, Ilumatobacter, and Solirubrobacter) and fungal (Pichiaceae) groups were negatively correlated with 3,5-DCA. A subsequent study in a fallow agricultural soil (soil B) showed limited formation of 3,5-DCA, which concurred with the lack of effects on nitrification. Direct 3,5-DCA application in soil B induced a dose-dependent reduction of PN and NO 3 - -N, which recovered with time. In vitro assays with terrestrial AOM verified the greater toxicity of 3,5-DCA over iprodione. "Candidatus Nitrosotalea sinensis" Nd2 was the most sensitive AOM to both compounds. Our findings build on previous evidence on the sensitivity of AOM to pesticides, reinforcing their potential utilization as indicators of the soil microbial toxicity of pesticides in pesticide environmental risk analysis and stressing the need to consider the contribution of TPs in the toxicity of pesticides on the soil microbial community. © 2018 American Society for Microbiology. | en |
dc.language.iso | en | en |
dc.source | Applied and Environmental Microbiology | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056623554&doi=10.1128%2fAEM.01536-18&partnerID=40&md5=718c5aaf0480c8b7a50078965efc3dac | |
dc.subject | Ammonia | en |
dc.subject | Ecosystems | en |
dc.subject | Enzymes | en |
dc.subject | Fungi | en |
dc.subject | Fungicides | en |
dc.subject | Nitrification | en |
dc.subject | Risk analysis | en |
dc.subject | Risk assessment | en |
dc.subject | Soils | en |
dc.subject | Toxicity | en |
dc.subject | 3,5-dichloroaniline | en |
dc.subject | Ammonia oxidizing bacteria | en |
dc.subject | Ammonia-oxidizing archaea | en |
dc.subject | Iprodione | en |
dc.subject | Soil microbial | en |
dc.subject | Transformation products | en |
dc.subject | Bacteria | en |
dc.subject | abundance | en |
dc.subject | agricultural soil | en |
dc.subject | bacterium | en |
dc.subject | chemical compound | en |
dc.subject | environmental risk | en |
dc.subject | enzyme | en |
dc.subject | enzyme activity | en |
dc.subject | functional group | en |
dc.subject | fungus | en |
dc.subject | grassland soil | en |
dc.subject | metabolite | en |
dc.subject | microbial activity | en |
dc.subject | microbial community | en |
dc.subject | nitrification | en |
dc.subject | pesticide | en |
dc.subject | soil microorganism | en |
dc.subject | species diversity | en |
dc.subject | toxicity | en |
dc.subject | Actinobacteria | en |
dc.subject | Bacteria (microorganisms) | en |
dc.subject | Fungi | en |
dc.subject | Hyphomicrobiaceae | en |
dc.subject | Nitrosomonadales | en |
dc.subject | Solirubrobacter | en |
dc.subject | 3,5-dichloroaniline | en |
dc.subject | 5 amino 4 imidazolecarboxamide | en |
dc.subject | ammonia | en |
dc.subject | aniline derivative | en |
dc.subject | hydantoin derivative | en |
dc.subject | iprodione | en |
dc.subject | pesticide | en |
dc.subject | archaeon | en |
dc.subject | bacterium | en |
dc.subject | biodiversity | en |
dc.subject | chemistry | en |
dc.subject | classification | en |
dc.subject | drug effect | en |
dc.subject | ecosystem | en |
dc.subject | genetics | en |
dc.subject | isolation and purification | en |
dc.subject | metabolism | en |
dc.subject | microbiology | en |
dc.subject | pharmacology | en |
dc.subject | soil | en |
dc.subject | soil pollutant | en |
dc.subject | Aminoimidazole Carboxamide | en |
dc.subject | Ammonia | en |
dc.subject | Aniline Compounds | en |
dc.subject | Archaea | en |
dc.subject | Bacteria | en |
dc.subject | Biodiversity | en |
dc.subject | Ecosystem | en |
dc.subject | Hydantoins | en |
dc.subject | Pesticides | en |
dc.subject | Soil | en |
dc.subject | Soil Microbiology | en |
dc.subject | Soil Pollutants | en |
dc.subject | American Society for Microbiology | en |
dc.title | Blame it on the metabolite: 3,5-dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms | en |
dc.type | journalArticle | en |