Εμφάνιση απλής εγγραφής

dc.creatorVasilakakis M., Sovatzidi G., Dimas G., Iakovidis D.K.en
dc.date.accessioned2023-01-31T10:27:07Z
dc.date.available2023-01-31T10:27:07Z
dc.date.issued2022
dc.identifier10.1109/SMC53654.2022.9945092
dc.identifier.isbn9781665452588
dc.identifier.issn1062922X
dc.identifier.urihttp://hdl.handle.net/11615/80428
dc.description.abstractConvolutional Neural Networks (CNNs) have demonstrated an outstanding performance on a range of image classification problems in various domains. However, their major drawback is that they are 'black box' and opaque classifiers. Taking into consideration the increasing demand for interpretable classification models, this paper introduces a novel meta-feature extraction scheme. This scheme is based on fuzzy sets, and it can be applied on the feature maps of a CNN. Initially, representative image prototypes are selected based on their deep feature map representation. Then, it constructs information granules from the feature maps, describing the content of each image class. It uses fuzzy sets to linguistically characterize the similarity between the deep feature maps of an image and the deep feature maps of the image prototypes. Thus, a classification outcome can be interpreted based on the features characterizing the different image classes involved in a classification problem. The experimental evaluation of the proposed scheme is performed on five publicly available image datasets. The results indicate that the proposed scheme outperforms other state-of-the-art classifiers, while providing an understandable interpretation of the classification result. © 2022 IEEE.en
dc.language.isoenen
dc.sourceConference Proceedings - IEEE International Conference on Systems, Man and Cyberneticsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85142758303&doi=10.1109%2fSMC53654.2022.9945092&partnerID=40&md5=5b1a2c081b3b34c2d4c4a3214627adf7
dc.subjectClassification (of information)en
dc.subjectConvolutionen
dc.subjectConvolutional neural networksen
dc.subjectFuzzy inferenceen
dc.subjectFuzzy neural networksen
dc.subjectFuzzy setsen
dc.subjectBlack boxesen
dc.subjectClassification modelsen
dc.subjectConvolutional neural networken
dc.subjectFeature mapen
dc.subjectFeatures extractionen
dc.subjectFuzzy-Logicen
dc.subjectImages classificationen
dc.subjectInterpretabilityen
dc.subjectMetafeatureen
dc.subjectPerformanceen
dc.subjectImage classificationen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleTowards the Interpretation of Convolutional Neural Networks for Image Classification Using Fuzzy Setsen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής