Εμφάνιση απλής εγγραφής

dc.creatorVan Lissa C.J., Stroebe W., vanDellen M.R., Leander N.P., Agostini M., Draws T., Grygoryshyn A., Gützgow B., Kreienkamp J., Vetter C.S., Abakoumkin G., Abdul Khaiyom J.H., Ahmedi V., Akkas H., Almenara C.A., Atta M., Bagci S.C., Basel S., Kida E.B., Bernardo A.B.I., Buttrick N.R., Chobthamkit P., Choi H.-S., Cristea M., Csaba S., Damnjanović K., Danyliuk I., Dash A., Di Santo D., Douglas K.M., Enea V., Faller D.G., Fitzsimons G.J., Gheorghiu A., Gómez Á., Hamaidia A., Han Q., Helmy M., Hudiyana J., Jeronimus B.F., Jiang D.-Y., Jovanović V., Kamenov, Kende A., Keng S.-L., Thanh Kieu T.T., Koc Y., Kovyazina K., Kozytska I., Krause J., Kruglanksi A.W., Kurapov A., Kutlaca M., Lantos N.A., Lemay E.P., Jr., Jaya Lesmana C.B., Louis W.R., Lueders A., Malik N.I., Martinez A.P., McCabe K.O., Mehulić J., Milla M.N., Mohammed I., Molinario E., Moyano M., Muhammad H., Mula S., Muluk H., Myroniuk S., Najafi R., Nisa C.F., Nyúl B., O'Keefe P.A., Olivas Osuna J.J., Osin E.N., Park J., Pica G., Pierro A., Rees J.H., Reitsema A.M., Resta E., Rullo M., Ryan M.K., Samekin A., Santtila P., Sasin E.M., Schumpe B.M., Selim H.A., Stanton M.V., Sultana S., Sutton R.M., Tseliou E., Utsugi A., Anne van Breen J., Van Veen K., Vázquez A., Wollast R., Wai-Lan Yeung V., Zand S., Žeželj I.L., Zheng B., Zick A., Zúñiga C., Bélanger J.J.en
dc.date.accessioned2023-01-31T10:25:48Z
dc.date.available2023-01-31T10:25:48Z
dc.date.issued2022
dc.identifier10.1016/j.patter.2022.100482
dc.identifier.issn26663899
dc.identifier.urihttp://hdl.handle.net/11615/80384
dc.description.abstractBefore vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant. © 2022 The Author(s)en
dc.language.isoenen
dc.sourcePatternsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127500709&doi=10.1016%2fj.patter.2022.100482&partnerID=40&md5=6e7067e3593841c20a11453d30b57bd0
dc.subjectDecision treesen
dc.subjectMachine learningen
dc.subjectCoronavirus disease 2019en
dc.subjectCoronavirusesen
dc.subjectDomain problemsen
dc.subjectDSML2: proof-of-concept: data science output have been formulated, implemented, and tested for one domain/problemen
dc.subjectHealth behaviorsen
dc.subjectProof of concepten
dc.subjectPublic good dilemmaen
dc.subjectPublic goodsen
dc.subjectRandom forestsen
dc.subjectSocial normen
dc.subjectCoronavirusen
dc.subjectCell Pressen
dc.titleUsing machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemicen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής