dc.creator | Tsolaki V., Zakynthinos G.E. | en |
dc.date.accessioned | 2023-01-31T10:17:19Z | |
dc.date.available | 2023-01-31T10:17:19Z | |
dc.date.issued | 2022 | |
dc.identifier | 10.1016/j.bja.2022.05.007 | |
dc.identifier.issn | 00070912 | |
dc.identifier.uri | http://hdl.handle.net/11615/80084 | |
dc.description.abstract | Computational modelling has been used to enlighten pathophysiological issues in patients with acute respiratory distress syndrome (ARDS) using a sophisticated, integrated cardiopulmonary model. COVID-19 ARDS is a pathophysiologically distinct entity characterised by dissociation between impairment in gas exchange and respiratory system mechanics, especially in the early stages of ARDS. Weaver and colleagues used computational modelling to elucidate factors contributing to generation of patient self-inflicted lung injury, and evaluated the effects of various spontaneous respiratory efforts with different oxygenation and ventilatory support modes. Their findings indicate that mechanical forces generated in the lung parenchyma are only counterbalanced when the respiratory support mode reduces the intensity of respiratory efforts. © 2022 British Journal of Anaesthesia | en |
dc.language.iso | en | en |
dc.source | British Journal of Anaesthesia | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132514695&doi=10.1016%2fj.bja.2022.05.007&partnerID=40&md5=2361ae0e91417c748540ad6b56168eb0 | |
dc.subject | adult respiratory distress syndrome | en |
dc.subject | artificial ventilation | en |
dc.subject | assisted ventilation | en |
dc.subject | atelectasis | en |
dc.subject | clinical research | en |
dc.subject | computer model | en |
dc.subject | computer simulation | en |
dc.subject | continuous positive airway pressure | en |
dc.subject | coronavirus disease 2019 | en |
dc.subject | Editorial | en |
dc.subject | ground glass opacity | en |
dc.subject | high flow nasal cannula therapy | en |
dc.subject | hypoxemia | en |
dc.subject | hypoxic lung vasoconstriction | en |
dc.subject | lung compliance | en |
dc.subject | lung gas exchange | en |
dc.subject | lung injury | en |
dc.subject | lung mechanics | en |
dc.subject | lung parenchyma | en |
dc.subject | mathematical model | en |
dc.subject | oxygen therapy | en |
dc.subject | oxygenation | en |
dc.subject | pathophysiology | en |
dc.subject | patient self inflicted lung injury | en |
dc.subject | positive end expiratory pressure ventilation | en |
dc.subject | predictive validity | en |
dc.subject | proportional assist ventilation | en |
dc.subject | protective ventilation | en |
dc.subject | thrombus | en |
dc.subject | tidal volume | en |
dc.subject | ventilator induced lung injury | en |
dc.subject | volutrauma | en |
dc.subject | breathing mechanics | en |
dc.subject | computer simulation | en |
dc.subject | human | en |
dc.subject | lung | en |
dc.subject | physiology | en |
dc.subject | respiratory distress syndrome | en |
dc.subject | Computer Simulation | en |
dc.subject | COVID-19 | en |
dc.subject | Humans | en |
dc.subject | Lung | en |
dc.subject | Lung Injury | en |
dc.subject | Positive-Pressure Respiration | en |
dc.subject | Respiration, Artificial | en |
dc.subject | Respiratory Distress Syndrome | en |
dc.subject | Respiratory Mechanics | en |
dc.subject | Elsevier Ltd | en |
dc.title | Simulation to minimise patient self-inflicted lung injury: are we almost there? | en |
dc.type | other | en |