Εμφάνιση απλής εγγραφής

dc.creatorTsimpoukis A., Vasileiadis N., Tatsios G., Valougeorgis D.en
dc.date.accessioned2023-01-31T10:14:39Z
dc.date.available2023-01-31T10:14:39Z
dc.date.issued2019
dc.identifier10.1063/1.5099051
dc.identifier.issn10706631
dc.identifier.urihttp://hdl.handle.net/11615/79982
dc.description.abstractThe nonlinear oscillatory fully developed rarefied gas flow between parallel plates due to an external harmonic force is investigated by the Direct Simulation Monte Carlo (DSMC) method in terms of the parameters characterizing the flow, namely, the gas rarefaction and oscillation parameters, and the force amplitude. The results are in dimensionless form and include the axial velocity, temperature, pressure, wall shear stress, and heat flow vector, as well as the flow rate, cycle-averaged wall shear stress, space-averaged axial heat flow, and pumping power. Even with large force amplitudes, all macroscopic distributions have a sinusoidal pattern with their fundamental frequency being the same with the driving frequency of the external force without the appearance of other harmonics, except of the axial heat flow where the nonlinearities are responsible for generating oscillatory motion containing several harmonics. Nonlinear effects are becoming more significant in highly rarefied flows and low oscillation frequencies. The temperature profile, including the bimodal shape encountered in steady-state flows in the continuum limit, strongly depends on the gas rarefaction and oscillation parameters. The DSMC results have been compared with the corresponding linear oscillatory results, available in the literature, to find out that at small and moderate external forces, the agreement between DSMC and linear flow rates is very good and always remain less than 10%, while at large external forces, the deviation in the flow rate amplitude reaches about 25%. The cycle-averaged oscillatory pumping power is not zero and smaller than the corresponding linear one, following the trend of the flow rates. © 2019 Author(s).en
dc.language.isoenen
dc.sourcePhysics of Fluidsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067990818&doi=10.1063%2f1.5099051&partnerID=40&md5=84ff9b79ba0b07edce02e36992b45a58
dc.subjectFlow of gasesen
dc.subjectFlow rateen
dc.subjectGasesen
dc.subjectHarmonic analysisen
dc.subjectHeat transferen
dc.subjectMonte Carlo methodsen
dc.subjectNonlinear opticsen
dc.subjectOscillating flowen
dc.subjectParallel flowen
dc.subjectShear stressen
dc.subjectVector spacesen
dc.subjectDirect simulation Monte Carlo methoden
dc.subjectDriving frequenciesen
dc.subjectFundamental frequenciesen
dc.subjectOscillation frequencyen
dc.subjectOscillation parametersen
dc.subjectParameters characterizingen
dc.subjectSinusoidal patternsen
dc.subjectTemperature profilesen
dc.subjectShear flowen
dc.subjectAmerican Institute of Physics Inc.en
dc.titleNonlinear oscillatory fully-developed rarefied gas flow in plane geometryen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής