Εμφάνιση απλής εγγραφής

dc.creatorSpyrou M., Kalogirou C., Konstantas C., Koutsovasilis P., Maroudas M., Antonopoulos C.D., Bellas N.en
dc.date.accessioned2023-01-31T10:01:38Z
dc.date.available2023-01-31T10:01:38Z
dc.date.issued2016
dc.identifier10.3233/978-1-61499-621-7-741
dc.identifier.isbn9781614996200
dc.identifier.issn09275452
dc.identifier.urihttp://hdl.handle.net/11615/79349
dc.description.abstractEnergy efficiency is a prime concern for both HPC and conventional workloads. Heterogeneous systems typically improve energy efficiency at the expense of increased programmer effort. A novel, complementary approach is approximating selected computations in order to minimize the energy footprint of applications. Not all applications or application components are amenable to this method, as approximations may be detrimental to the quality of the end result. Therefore the programmer should be able to express algorithmic wisdom on the importance of specific computations for the quality of the end-result and thus their tolerance to approximations. We introduce a framework comprising of a parallel meta-programming model based on OpenCL, a compiler which supports this programming model, and a runtime system which serves as the compiler backend. The proposed framework: (a) allows the programmer to express the relative importance of different computations for the quality of the output, thus facilitating the dynamic exploration of energy /quality tradeoffs in a disciplined way, and (b) simplifies the development of parallel algorithms on heterogeneous systems, relieving the programmer from tasks such as work scheduling and data manipulation across address spaces. We evaluate our approach using a number of real-world applications, beyond kernels, with diverse characteristics. Our results indicate that significant energy savings can be achieved by combining the execution on heterogeneous systems with approximations, with graceful degradation of output quality. © 2016 The authors and IOS Press. All rights reserved.en
dc.language.isoenen
dc.sourceAdvances in Parallel Computingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84969920369&doi=10.3233%2f978-1-61499-621-7-741&partnerID=40&md5=94c8494d54c2aca2281207b4d21481f2
dc.subjectElsevier B.V.en
dc.titleEnergy minimization on heterogeneous systems through approximate computingen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής