Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

An efficient algorithm for bulk-loading xBR+-trees

Thumbnail
Author
Roumelis G., Vassilakopoulos M., Corral A., Manolopoulos Y.
Date
2018
Language
en
DOI
10.1016/j.csi.2017.05.003
Keyword
Big data
Database systems
Decision trees
Digital storage
Forestry
Information management
Location based services
Query languages
Query processing
Search engines
Telecommunication services
Trees (mathematics)
Bulk loading
Spatial database
Spatial indexes
Spatial query processing
XBR+-trees
Loading
Elsevier B.V.
Metadata display
Abstract
A major part of the interface to a database is made up of the queries that can be addressed to this database and answered (processed) in an efficient way, contributing to the quality of the developed software. Efficiently processed spatial queries constitute a fundamental part of the interface to spatial databases due to the wide area of applications that may address such queries, like geographical information systems (GIS), location-based services, computer visualization, automated mapping, facilities management, etc. Another important capability of the interface to a spatial database is to offer the creation of efficient index structures to speed up spatial query processing. The xBR+-tree is a balanced disk-resident quadtree-based index structure for point data, which is very efficient for processing such queries. Bulk-loading refers to the process of creating an index from scratch, when the dataset to be indexed is available beforehand, instead of creating the index gradually (and more slowly), when the dataset elements are inserted one-by-one. In this paper, we present an algorithm for bulk-loading xBR+-trees for big datasets residing on disk, using a limited amount of main memory. The resulting tree is not only built fast, but exhibits high performance in processing a broad range of spatial queries, where one or two datasets are involved. To justify these characteristics, using real and artificial datasets of various cardinalities, first, we present an experimental comparison of this algorithm vs. a previous version of the same algorithm and STR, a popular algorithm of bulk-loading R-trees, regarding tree creation time and the characteristics of the trees created, and second, we experimentally compare the query efficiency of bulk-loaded xBR+-trees vs. bulk-loaded R-trees, regarding I/O and execution time. Thus, this paper contributes to the implementation of spatial database interfaces and the efficient storage organization for big spatial data management. © 2017 Elsevier B.V.
URI
http://hdl.handle.net/11615/78581
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19705]
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
htmlmap