Εμφάνιση απλής εγγραφής

dc.creatorProias G., Gravalos I., Papageorgiou E., Poczęta K., Sakellariou-Makrantonaki M.en
dc.date.accessioned2023-01-31T09:50:45Z
dc.date.available2023-01-31T09:50:45Z
dc.date.issued2020
dc.identifier10.37394/232015.2020.16.72
dc.identifier.issn17905079
dc.identifier.urihttp://hdl.handle.net/11615/78374
dc.description.abstractThe aim of this study is to employ a Time Lagged Recurrent Neural Network (TLRNN) model for forecasting near future reference evapotranspiration (ETo) values by using climate data taken from meteorological station located in Velestino, a village near the city of Volos, in Thessaly, centre of Greece. TLRNN is Multilayer Perceptron Neural Network (MLP-NN) with locally recurrent connections and short-term memory structures that can learn temporal variations from the dataset. The network topology is using input layer, hidden layer and a single output with the ETo values. The network model was trained using the back propagation through time algorithm. Performance evaluations of the network model done by comparing the Mean Bias Error (MBE), Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Index of Agreement (IA). The evaluation of the results showed that the developed TLRNN model works properly and the forecasting ETo values approximate the FAO-56 PM values. A good proximity of predictions with the experimental data was noticed, achieving coefficients of determination (R2) greater than 75% and root mean square error (RMSE) values less than 1.0 mm/day. The forecasts range up to three days ahead and can be helpful to farmers for irrigation scheduling. © 2020, World Scientific and Engineering Academy and Society. All rights reserved.en
dc.language.isoenen
dc.sourceWSEAS Transactions on Environment and Developmenten
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093825582&doi=10.37394%2f232015.2020.16.72&partnerID=40&md5=7dd4d916ee7e7847698bb8114ecacc45
dc.subjectWorld Scientific and Engineering Academy and Societyen
dc.titleForecasting reference evapotranspiration using time lagged recurrent neural networken
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής