Εμφάνιση απλής εγγραφής

dc.creatorPolydorou E., Verouti M., Soultati A., Armadorou K.-K., Verykios A., Filippatos P.-P., Galanis G., Tourlouki K., Kehayias N., Karatasios I., Kuganathan N., Chroneos A., Kilikoglou V., Palilis L.C., Argitis P., Davazoglou D., Fakharuddin A., Mohd Yusoff A.R.B., Vasilopoulou M.en
dc.date.accessioned2023-01-31T09:50:25Z
dc.date.available2023-01-31T09:50:25Z
dc.date.issued2022
dc.identifier10.1016/j.orgel.2022.106607
dc.identifier.issn15661199
dc.identifier.urihttp://hdl.handle.net/11615/78305
dc.description.abstractEarth-abundant transition metal oxides deposited at room temperature with low-cost methods suitable for large area manufacturing can offer advances in many fields of energy related devices. Here we report the room-temperature deposition of a fluorine-doped tantalum pentoxide using a home-made, low-cost hot-wire deposition system. This novel tantalum oxyfluoride material is super hydrophobic, ultra-transparent within the visible spectrum, and possesses adequate conductivity and suitable valence band and conduction band extrema for acting as efficient hole extraction and electron blocking layer in organic solar cells with the forward architecture. By inserting this material in the form of nanoparticles deposited on top of the commonly used as hole transport layer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, higher efficiencies compared to the reference cells without the nanoparticles were demonstrated in solar cells based on blends of polymer donors with either a fullerene (where maximum achieved efficiency was improved from 6.07% to 7.90%) or a non-fullerene acceptor (reaching values of 13.48% compared to 11.32% of the reference cell). Moreover, significant improvement in device stability was achievd in unencapsulated devices continuously exposed in a humid environment for 500 h. This work demonstrates the unambiguous potential of well-designed metal oxide materials as charge transport and blocking interlayers and protective buffers in organic solar cells and beyond. © 2022 Elsevier B.V.en
dc.language.isoenen
dc.sourceOrganic Electronicsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135137540&doi=10.1016%2fj.orgel.2022.106607&partnerID=40&md5=ca93826b3c95cc4c1d8aa6477c70617f
dc.subjectCostsen
dc.subjectDepositionen
dc.subjectFullerenesen
dc.subjectHydrophobicityen
dc.subjectNanoparticlesen
dc.subjectTransition metal oxidesen
dc.subjectTransition metalsen
dc.subjectDeposition systemsen
dc.subjectEnergyen
dc.subjectFluorine dopingen
dc.subjectFluorine-dopeden
dc.subjectHot-wire depositionsen
dc.subjectLow cost methodsen
dc.subjectLow-costsen
dc.subjectRoom temperature depositionen
dc.subjectTantalum pentoxideen
dc.subjectTransition-metal oxidesen
dc.subjectOrganic solar cellsen
dc.subjectElsevier B.V.en
dc.titleRoom-temperature deposited fluorine-doped tantalum pentoxide for stable organic solar cellsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής