Εμφάνιση απλής εγγραφής

dc.creatorPoczeta K., Papageorgiou E.I.en
dc.date.accessioned2023-01-31T09:50:18Z
dc.date.available2023-01-31T09:50:18Z
dc.date.issued2018
dc.identifier10.1109/ICTAI.2018.00158
dc.identifier.isbn9781538674499
dc.identifier.issn10823409
dc.identifier.urihttp://hdl.handle.net/11615/78274
dc.description.abstractThe goal of this research study is to test the hardiness of a novel hybrid computational intelligence model in day-ahead natural gas demand prediction. The proposed model combines an evolutionary learned FCM method with a common ANN to construct a cascaded model that leads to high prediction accuracy in most distribution points. The FCM technique is used to provide a model which concepts are used as input nodes in a second-stage ANN model employed to provide the forecast for each gas time series. Learned by structure optimization genetic algorithm, the FCM outputs are fed into an ANN to refine the initial forecast and upgrade the overall forecasting accuracy. The model is applied to five distribution points that compose the natural gas grid of a Greek region, district of Thessaly. This approach enables the comparison of the hybrid model performance on different FCM and ANN structures and on consumption patterns, providing also insights on the characteristics of large urban centers and small towns. © 2018 IEEE.en
dc.language.isoenen
dc.sourceProceedings - International Conference on Tools with Artificial Intelligence, ICTAIen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060791611&doi=10.1109%2fICTAI.2018.00158&partnerID=40&md5=3d44c91f21ed1a0a377c5ee2f4292b96
dc.subjectCognitive systemsen
dc.subjectFuzzy inferenceen
dc.subjectFuzzy neural networksen
dc.subjectFuzzy rulesen
dc.subjectGasesen
dc.subjectGenetic algorithmsen
dc.subjectLarge scale systemsen
dc.subjectNatural gasen
dc.subjectNeural networksen
dc.subjectStructural optimizationen
dc.subjectConsumption patternsen
dc.subjectDaily consumptionen
dc.subjectDistribution pointsen
dc.subjectForecasting accuracyen
dc.subjectFuzzy cognitive mapen
dc.subjectHybrid computational intelligenceen
dc.subjectPrediction accuracyen
dc.subjectStructure optimizationen
dc.subjectForecastingen
dc.subjectIEEE Computer Societyen
dc.titleImplementing fuzzy cognitive maps with neural networks for natural gas predictionen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής