Εμφάνιση απλής εγγραφής

dc.creatorPetrogianni A., Koromilas P., Giannakopoulos T.en
dc.date.accessioned2023-01-31T09:49:54Z
dc.date.available2023-01-31T09:49:54Z
dc.date.issued2022
dc.identifier10.1007/978-3-031-04881-4_48
dc.identifier.isbn9783031048807
dc.identifier.issn03029743
dc.identifier.urihttp://hdl.handle.net/11615/78130
dc.description.abstractVisual information contains the most important characteri-stics of a movie regarding the related content and filming techniques. Especially the way the camera moves to capture the scene is vital to define the director’s aesthetics. However, most of the machine learning tasks existing in the literature treat the movie as shallow content, rather than as an artistic work, and therefore focus on detecting objects and faces, recognizing activities and extracting plot-related topics. On the other hand, cinematography is closely connected to the choice of different ways to handle the camera, and thus camera movements include information that is useful in order to analyse the artistic style of a movie. In this work we present an original, publicly available (https://github.com/magcil/movie_shot_classification_dataset ) dataset for film shot type classification that is associated with the distinction across 10 types of camera movements that cover the vast majority of types of shots in real movies. In addition, two different methods are evaluated on the new dataset, one static that is based on feature statistics across frames, and one sequential that tries to predict the target class based on the input frame sequence using LSTMs. Based on the evaluation process it is inferred that the sequential method is more suited for modeling the camera movements. © 2022, Springer Nature Switzerland AG.en
dc.language.isoenen
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129873144&doi=10.1007%2f978-3-031-04881-4_48&partnerID=40&md5=308d61085810eb1419c7b2b71f130fe0
dc.subjectCamerasen
dc.subjectClassification (of information)en
dc.subjectComputer visionen
dc.subjectObject detectionen
dc.subjectArtistic worksen
dc.subjectCamera movement classificationen
dc.subjectCamera's movementsen
dc.subjectDetecting objectsen
dc.subjectMovie analysisen
dc.subjectRelated contenten
dc.subjectShot classificationen
dc.subjectTarget classen
dc.subjectType classificationsen
dc.subjectVisual informationen
dc.subjectMotion picturesen
dc.subjectSpringer Science and Business Media Deutschland GmbHen
dc.titleFilm Shot Type Classification Based on Camera Movement Stylesen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής