Hadoop-based distributed k-shell decomposition for social networks
Fecha
2017Language
en
Materia
Resumen
Complex network analysis comprises a popular set of tools for the analysis of online social networks. Among these techniques, k-shell decomposition of a network is a technique that has been used for centrality analysis, for communities' discovery, for the detection of influential spreaders, and so on. The huge volume of input graphs and the environments where the algorithm needs to run, i.e., large data centers, makes none of the existing algorithms appropriate for the decomposition of graphs into shells. In this article, we develop for a distributed algorithm based on MapReduce for the k-shell decomposition of a graph. We furthermore, provide an implementation and assessment of the algorithm using real social network datasets. We analyze the tradeoffs and speedup of the proposed algorithm and conclude for its virtues and shortcomings. © 2018 IGI Global. All rights reserved.