Εμφάνιση απλής εγγραφής

dc.creatorPapandrianos N.I., Feleki A., Papageorgiou E.I., Martini C.en
dc.date.accessioned2023-01-31T09:44:01Z
dc.date.available2023-01-31T09:44:01Z
dc.date.issued2022
dc.identifier10.3390/jcm11133918
dc.identifier.issn20770383
dc.identifier.urihttp://hdl.handle.net/11615/77779
dc.description.abstract(1) Background: Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a long-established estimation methodology for medical diagnosis using image classification illustrating conditions in coronary artery disease. For these procedures, convo-lutional neural networks have proven to be very beneficial in achieving near-optimal accuracy for the automatic classification of SPECT images. (2) Methods: This research addresses the supervised learning-based ideal observer image classification utilizing an RGB-CNN model in heart images to diagnose CAD. For comparison purposes, we employ VGG-16 and DenseNet-121 pre-trained networks that are indulged in an image dataset representing stress and rest mode heart states ac-quired by SPECT. In experimentally evaluating the method, we explore a wide repertoire of deep learning network setups in conjunction with various robust evaluation and exploitation metrics. Additionally, to overcome the image dataset cardinality restrictions, we take advantage of the data augmentation technique expanding the set into an adequate number. Further evaluation of the model was performed via 10-fold cross-validation to ensure our model’s reliability. (3) Results: The proposed RGB-CNN model achieved an accuracy of 91.86%, while VGG-16 and DenseNet-121 reached 88.54% and 86.11%, respectively. (4) Conclusions: The abovementioned experiments verify that the newly developed deep learning models may be of great assistance in nuclear medicine and clinical decision-making. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.language.isoenen
dc.sourceJournal of Clinical Medicineen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133389956&doi=10.3390%2fjcm11133918&partnerID=40&md5=a4a1f42a5aabe098ba1f85d56cb1a2f9
dc.subjectArticleen
dc.subjectbinary classificationen
dc.subjectclinical decision makingen
dc.subjectcomparative studyen
dc.subjectcomputer aided designen
dc.subjectcontrolled studyen
dc.subjectconvolutional neural networken
dc.subjectcoronary artery diseaseen
dc.subjectcross validationen
dc.subjectdeep learningen
dc.subjectdiagnostic accuracyen
dc.subjectevaluation studyen
dc.subjectheart infarctionen
dc.subjecthumanen
dc.subjectimage analysisen
dc.subjectimage processingen
dc.subjectmulticlass classificationen
dc.subjectmyocardial perfusion imagingen
dc.subjectreceiver operating characteristicen
dc.subjectreliabilityen
dc.subjectsensitivity and specificityen
dc.subjectsingle photon emission computed tomographyen
dc.subjectMDPIen
dc.titleDeep Learning-Based Automated Diagnosis for Coronary Artery Disease Using SPECT-MPI Imagesen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής