Εμφάνιση απλής εγγραφής

dc.creatorPapadimitriou C., Argyris C.en
dc.date.accessioned2023-01-31T09:42:14Z
dc.date.available2023-01-31T09:42:14Z
dc.date.issued2017
dc.identifier10.1016/j.proeng.2017.09.205
dc.identifier.issn18777058
dc.identifier.urihttp://hdl.handle.net/11615/77568
dc.description.abstractA Bayesian optimal experimental design (OED) framework is revisited and applied to a number of structural dynamics problems. The objective is to optimize the design of the experiment such that the most informative data are obtained for either for parameter estimation or response predictions. The Bayesian OED is based on maximizing the expected utility function taken as the Kullback-Leibler divergence between the prior and posterior distribution of the model parameters. Asymptotic approximations for the multi-dimensional integrals arising in the formulation of the expected utility function are proposed, valid for large number of data and small prediction errors. The OED based on these approximations are shown to be equivalent to the OED based on the robust information entropy introduced in the past for structural dynamics applications. Analytical expressions are developed to point out the effect of the variances of Bayesian Gaussian priors on the optimal design. The design variables may include the location of sensors, location of actuators or characteristics of the excitation such as amplitude variation and frequency content characteristics. A stochastic optimization algorithm is conveniently used to solve the optimization problem in the continuous physical domain of variation of the design variables. The proposed framework is applicable to complex linear and nonlinear dynamical systems. The asymptotic results are compared to the results obtained from accurate but computationally expensive sampling algorithms and are shown to be adequate for experimental design purposes. Two optimal experimental design problems illustrate the proposed methodology: 1) optimal sensor placement for load identification in nonlinear beam models, 2) optimal sensor placement for modal identification of bridges using complex FE models. © 2017 The Authors. Published by Elsevier Ltd.en
dc.language.isoenen
dc.sourceProcedia Engineeringen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029902140&doi=10.1016%2fj.proeng.2017.09.205&partnerID=40&md5=dfb40e1d18f0be1321007d64504d2cae
dc.subjectBridgesen
dc.subjectDesign of experimentsen
dc.subjectDynamical systemsen
dc.subjectDynamicsen
dc.subjectForecastingen
dc.subjectNonlinear dynamical systemsen
dc.subjectOptimizationen
dc.subjectProblem solvingen
dc.subjectStatisticsen
dc.subjectStructural dynamicsen
dc.subjectAsymptotic approximationen
dc.subjectBayesian optimal experimental designsen
dc.subjectComplex dynamical systemsen
dc.subjectInformation entropyen
dc.subjectKullback Leibler divergenceen
dc.subjectOptimal experimental designsen
dc.subjectStochastic optimization algorithmen
dc.subjectUtility functionsen
dc.subjectParameter estimationen
dc.subjectElsevier Ltden
dc.titleBayesian optimal experimental design for parameter estimation and response predictions in complex dynamical systemsen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής