Εμφάνιση απλής εγγραφής

dc.creatorPantazi X.E., Lagopodi A.L., Tamouridou A.A., Kamou N.N., Giannakis I., Lagiotis G., Stavridou E., Madesis P., Tziotzios G., Dolaptsis K., Moshou D.en
dc.date.accessioned2023-01-31T09:41:46Z
dc.date.available2023-01-31T09:41:46Z
dc.date.issued2022
dc.identifier10.3390/s22165970
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/11615/77500
dc.description.abstractThe aim of this study was to develop three supervised self-organizing map (SOM) models for the automatic recognition of a systemic resistance state in plants after application of a resistance inducer. The pathosystem Fusarium oxysporum f. sp. radicis-lycopersici (FORL) + tomato was used. The inorganic, defense inducer, Acibenzolar-S-methyl (benzo-[1,2,3]-thiadiazole-7-carbothioic acid-S-methyl ester, ASM), reported to induce expression of defense genes in tomato, was applied to activate the defense mechanisms in the plant. A handheld fluorometer, FluorPen FP 100-MAX-LM by SCI, was used to assess the fluorescence kinetics response of the induced resistance in tomato plants. To achieve recognition of resistance induction, three models of supervised SOMs, namely SKN, XY-F, and CPANN, were used to classify fluorescence kinetics data, in order to determine the induced resistance condition in tomato plants. To achieve this, a parameterization of fluorescence kinetics curves was developed corresponding to fluorometer variables of the Kautsky Curves. SKN was the best supervised SOM, achieving 97.22% to 100% accuracy. Gene expression data were used to confirm the accuracy of the supervised SOMs. © 2022 by the authors.en
dc.language.isoenen
dc.sourceSensorsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85136606746&doi=10.3390%2fs22165970&partnerID=40&md5=0f8311aca0c00274f983762920898490
dc.subjectElectric resistanceen
dc.subjectFluorescenceen
dc.subjectFruitsen
dc.subjectGene expressionen
dc.subjectKineticsen
dc.subjectNetwork securityen
dc.subjectArtificial neural network modelingen
dc.subjectClusteringsen
dc.subjectFluorescence kineticsen
dc.subjectGenes expressionen
dc.subjectInduced resistanceen
dc.subjectModel-based OPCen
dc.subjectPlant protectionen
dc.subjectResistance stateen
dc.subjectSupervised self-organizing mapen
dc.subjectTomato plantsen
dc.subjectData miningen
dc.subjectfluorescenceen
dc.subjectFusariumen
dc.subjectgeneticsen
dc.subjectkineticsen
dc.subjectmetabolismen
dc.subjectplant diseaseen
dc.subjecttomatoen
dc.subjectFluorescenceen
dc.subjectFusariumen
dc.subjectKineticsen
dc.subjectLycopersicon esculentumen
dc.subjectNeural Networks, Computeren
dc.subjectPlant Diseasesen
dc.subjectMDPIen
dc.titleDiagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kineticsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής