Εμφάνιση απλής εγγραφής

dc.creatorNeromyliotis E., Kalamatianos T., Paschalis A., Komaitis S., Fountas K.N., Kapsalaki E.Z., Stranjalis G., Tsougos I.en
dc.date.accessioned2023-01-31T09:40:06Z
dc.date.available2023-01-31T09:40:06Z
dc.date.issued2022
dc.identifier10.1002/jmri.27378
dc.identifier.issn10531807
dc.identifier.urihttp://hdl.handle.net/11615/77145
dc.description.abstractMeningioma is one of the most frequent primary central nervous system tumors. While magnetic resonance imaging (MRI), is the standard radiologic technique for provisional diagnosis and surveillance of meningioma, it nevertheless lacks the prima facie capacity in determining meningioma biological aggressiveness, growth, and recurrence potential. An increasing body of evidence highlights the potential of machine learning and radiomics in improving the consistency and productivity and in providing novel diagnostic, treatment, and prognostic modalities in neuroncology imaging. The aim of the present article is to review the evolution and progress of approaches utilizing machine learning in meningioma MRI-based sementation, diagnosis, grading, and prognosis. We provide a historical perspective on original research on meningioma spanning over two decades and highlight recent studies indicating the feasibility of pertinent approaches, including deep learning in addressing several clinically challenging aspects. We indicate the limitations of previous research designs and resources and propose future directions by highlighting areas of research that remain largely unexplored. Level of Evidence: 5. Technical Efficacy Stage: 2. © 2020 International Society for Magnetic Resonance in Medicine.en
dc.language.isoenen
dc.sourceJournal of Magnetic Resonance Imagingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091780398&doi=10.1002%2fjmri.27378&partnerID=40&md5=99595568f359590d16c3a725f85bf955
dc.subjectcancer gradingen
dc.subjectcancer prognosisen
dc.subjectcontrast enhancementen
dc.subjectconvolutional neural networken
dc.subjectfeasibility studyen
dc.subjecthumanen
dc.subjectimage segmentationen
dc.subjectmachine learningen
dc.subjectmeningiomaen
dc.subjectnuclear magnetic resonance imagingen
dc.subjectperfusion weighted imagingen
dc.subjectradiomicsen
dc.subjectrandom foresten
dc.subjectReviewen
dc.subjectsupport vector machineen
dc.subjectdiagnostic imagingen
dc.subjectmachine learningen
dc.subjectmeningiomaen
dc.subjectnuclear magnetic resonance imagingen
dc.subjectprognosisen
dc.subjectHumansen
dc.subjectMachine Learningen
dc.subjectMagnetic Resonance Imagingen
dc.subjectMeningeal Neoplasmsen
dc.subjectMeningiomaen
dc.subjectPrognosisen
dc.subjectJohn Wiley and Sons Incen
dc.titleMachine Learning in Meningioma MRI: Past to Present. A Narrative Reviewen
dc.typeotheren


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής