Εμφάνιση απλής εγγραφής

dc.creatorLarson K., Bowman C., Papadimitriou C., Koumoutsakos P., Matzavinos A.en
dc.date.accessioned2023-01-31T08:48:54Z
dc.date.available2023-01-31T08:48:54Z
dc.date.issued2019
dc.identifier10.1098/rsos.182229
dc.identifier.issn20545703
dc.identifier.urihttp://hdl.handle.net/11615/75693
dc.description.abstractPatient-specific modelling of haemodynamics in arterial networks has so far relied on parameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty quantification framework which makes two major advances: an efficient parallel implementation, allowing parameter estimation for more complex forward models, and a system for practical model selection, allowing evidence-based comparison between distinct physical models. We demonstrate the proposed methodology by generating simulated noisy flow velocity data from a branching arterial tree model in which a structural defect is introduced at an unknown location; our approach is shown to accurately locate the abnormality and estimate its physical properties even in the presence of significant observational and systemic error. As the method readily admits real data, it shows great potential in patient-specific parameter fitting for haemodynamical flow models. © 2019 The Authors. Published by the Royal Societyen
dc.language.isoenen
dc.sourceRoyal Society Open Scienceen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074700164&doi=10.1098%2frsos.182229&partnerID=40&md5=edccabebe1ded3a76fe423a6d79fd5c5
dc.subjectRoyal Society Publishingen
dc.titleDetection of arterial wall abnormalities via Bayesian model selectionen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής