dc.creator | Kyriakidis I., Vasileiou E., Pana Z.D., Tragiannidis A. | en |
dc.date.accessioned | 2023-01-31T08:47:38Z | |
dc.date.available | 2023-01-31T08:47:38Z | |
dc.date.issued | 2021 | |
dc.identifier | 10.3390/pathogens10030373 | |
dc.identifier.issn | 20760817 | |
dc.identifier.uri | http://hdl.handle.net/11615/75567 | |
dc.description.abstract | Acinetobacter baumannii is a Gram-negative ESKAPE microorganism that poses a threat to public health by causing severe and invasive (mostly nosocomial) infections linked with high mortality rates. During the last years, this pathogen displayed multidrug resistance (MDR), mainly due to extensive antibiotic abuse and poor stewardship. MDR isolates are associated with medical history of long hospitalization stays, presence of catheters, and mechanical ventilation, while immun-ocompromised and severely ill hosts predispose to invasive infections. Next-generation sequencing techniques have revolutionized diagnosis of severe A. baumannii infections, contributing to timely diagnosis and personalized therapeutic regimens according to the identification of the respective resistance genes. The aim of this review is to describe in detail all current knowledge on the genetic background of A. baumannii resistance mechanisms in humans as regards beta-lactams (penicillins, cephalosporins, carbapenems, monobactams, and beta-lactamase inhibitors), aminoglycosides, tet-racyclines, fluoroquinolones, macrolides, lincosamides, streptogramin antibiotics, polymyxins, and others (amphenicols, oxazolidinones, rifamycins, fosfomycin, diaminopyrimidines, sulfonamides, glycopeptide, and lipopeptide antibiotics). Mechanisms of antimicrobial resistance refer mainly to regulation of antibiotic transportation through bacterial membranes, alteration of the antibiotic target site, and enzymatic modifications resulting in antibiotic neutralization. Virulence factors that may affect antibiotic susceptibility profiles and confer drug resistance are also being discussed. Reports from cases of A. baumannii coinfection with SARS-CoV-2 during the COVID-19 pandemic in terms of resistance profiles and MDR genes have been investigated. © 2021 by the authors. | en |
dc.language.iso | en | en |
dc.source | Pathogens | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103516603&doi=10.3390%2fpathogens10030373&partnerID=40&md5=0d816889a2b4a6036f2615715134ad16 | |
dc.subject | 2,4 diaminopyrimidine derivative | en |
dc.subject | amikacin | en |
dc.subject | aminoglycoside | en |
dc.subject | antibiotic agent | en |
dc.subject | antibody drug conjugate | en |
dc.subject | apramycin | en |
dc.subject | astromicin | en |
dc.subject | azithromycin | en |
dc.subject | aztreonam | en |
dc.subject | beta lactam | en |
dc.subject | beta lactamase | en |
dc.subject | beta lactamase AmpC | en |
dc.subject | beta lactamase inhibitor | en |
dc.subject | bleomycin | en |
dc.subject | brentuximab vedotin | en |
dc.subject | carbapenem | en |
dc.subject | carbapenem derivative | en |
dc.subject | carbapenemase | en |
dc.subject | cefepime | en |
dc.subject | cefiderocol | en |
dc.subject | cefotaxime | en |
dc.subject | ceftazidime | en |
dc.subject | ceftriaxone | en |
dc.subject | cephalosporin derivative | en |
dc.subject | cephalosporinase | en |
dc.subject | chloramphenicol | en |
dc.subject | ciprofloxacin | en |
dc.subject | clarithromycin | en |
dc.subject | clindamycin | en |
dc.subject | colistin | en |
dc.subject | cotrimoxazole | en |
dc.subject | daptomycin | en |
dc.subject | diamine | en |
dc.subject | dibekacin | en |
dc.subject | DNA | en |
dc.subject | doxycycline | en |
dc.subject | enrofloxacin | en |
dc.subject | eravacycline | en |
dc.subject | erythromycin | en |
dc.subject | exopolysaccharide | en |
dc.subject | extended spectrum beta lactamase | en |
dc.subject | florfenicol | en |
dc.subject | folic acid | en |
dc.subject | fosfomycin | en |
dc.subject | gentamicin | en |
dc.subject | glutathione | en |
dc.subject | glutathione reductase | en |
dc.subject | glutathione transferase | en |
dc.subject | glycopeptide | en |
dc.subject | glycosyltransferase | en |
dc.subject | hygromycin | en |
dc.subject | imipenem | en |
dc.subject | isavuconazole | en |
dc.subject | isepamicin | en |
dc.subject | kanamycin | en |
dc.subject | levofloxacin | en |
dc.subject | lincomycin | en |
dc.subject | lincosamide | en |
dc.subject | linezolid | en |
dc.subject | lipopeptide | en |
dc.subject | lividomycin | en |
dc.subject | macrolide | en |
dc.subject | membrane fusion protein | en |
dc.subject | meropenem | en |
dc.subject | metallo beta lactamase | en |
dc.subject | minocycline | en |
dc.subject | monobactam derivative | en |
dc.subject | multidrug and toxin extrusion protein 1 | en |
dc.subject | multidrug and toxin extrusion protein 2 | en |
dc.subject | neomycin | en |
dc.subject | netilmicin | en |
dc.subject | norfloxacin | en |
dc.subject | ofloxacin | en |
dc.subject | oleandomycin | en |
dc.subject | outer membrane protein | en |
dc.subject | oxazolidinone derivative | en |
dc.subject | oxytetracycline | en |
dc.subject | paromomycin | en |
dc.subject | penicillin binding protein | en |
dc.subject | penicillin derivative | en |
dc.subject | pleuromutilin | en |
dc.subject | polymyxin | en |
dc.subject | polymyxin B | en |
dc.subject | polypeptide antibiotic agent | en |
dc.subject | porin | en |
dc.subject | quinoline derived antiinfective agent | en |
dc.subject | quinolone derivative | en |
dc.subject | ribostamycin | en |
dc.subject | rifampicin | en |
dc.subject | rifamycin | en |
dc.subject | rifapentine | en |
dc.subject | RNA | en |
dc.subject | RNA 16S | en |
dc.subject | sisomicin | en |
dc.subject | spectinomycin | en |
dc.subject | streptogramin derivative | en |
dc.subject | streptomycin | en |
dc.subject | sulfonamide | en |
dc.subject | teicoplanin | en |
dc.subject | telavancin | en |
dc.subject | tetracycline | en |
dc.subject | tetracycline derivative | en |
dc.subject | thiamphenicol | en |
dc.subject | tigecycline | en |
dc.subject | tobramycin | en |
dc.subject | trimethoprim | en |
dc.subject | vancomycin | en |
dc.subject | virulence factor | en |
dc.subject | Acinetobacter | en |
dc.subject | Acinetobacter baumannii | en |
dc.subject | antibiotic resistance | en |
dc.subject | antibiotic sensitivity | en |
dc.subject | antifungal resistance | en |
dc.subject | antimicrobial activity | en |
dc.subject | artificial ventilation | en |
dc.subject | bacterial gene | en |
dc.subject | bacterial virulence | en |
dc.subject | bacterium identification | en |
dc.subject | bioinformatics | en |
dc.subject | carbapenem resistant Acinetobacter baumannii | en |
dc.subject | chemical structure | en |
dc.subject | coronavirus disease 2019 | en |
dc.subject | DNA replication | en |
dc.subject | enzyme modification | en |
dc.subject | glucose metabolism | en |
dc.subject | high throughput sequencing | en |
dc.subject | human | en |
dc.subject | JNK signaling | en |
dc.subject | Klebsiella pneumoniae | en |
dc.subject | length of stay | en |
dc.subject | MAPK signaling | en |
dc.subject | methicillin resistant Staphylococcus aureus | en |
dc.subject | minimum inhibitory concentration | en |
dc.subject | mortality | en |
dc.subject | multidrug resistance | en |
dc.subject | multilocus sequence typing | en |
dc.subject | nosocomial transmission | en |
dc.subject | polymerase chain reaction | en |
dc.subject | protein synthesis | en |
dc.subject | Pseudomonas aeruginosa | en |
dc.subject | quorum sensing | en |
dc.subject | Review | en |
dc.subject | sequence homology | en |
dc.subject | transmission electron microscopy | en |
dc.subject | type VI secretion system | en |
dc.subject | virus virulence | en |
dc.subject | whole genome sequencing | en |
dc.subject | MDPI AG | en |
dc.title | Acinetobacter baumannii antibiotic resistance mechanisms | en |
dc.type | other | en |