Εμφάνιση απλής εγγραφής

dc.creatorKolomvatsos K., Anagnostopoulos C., Hadjiefthymiades S.en
dc.date.accessioned2023-01-31T08:43:46Z
dc.date.available2023-01-31T08:43:46Z
dc.date.issued2015
dc.identifier10.1016/j.bdr.2015.02.001
dc.identifier.issn22145796
dc.identifier.urihttp://hdl.handle.net/11615/75018
dc.description.abstractBig data analytics is the key research subject for future data driven decision making applications. Due to the large amount of data, progressive analytics could provide an efficient way for querying big data clusters. Each cluster contains only a piece of the examined data. Continuous queries over these data sources require intelligent mechanisms to result the final outcome (query response) in the minimum time with the maximum performance. A Query Controller (QC) is responsible to manage continuous/sequential queries and return the final outcome to users or applications. In this paper, we propose a mechanism that can be adopted by the QC. The proposed mechanism is capable of managing partial results retrieved by a number of processors each one responsible for each cluster. Each processor executes a query over a specific cluster of data. Our mechanism adopts two sequential decision making models for handling the incoming partial results. The first model is based on a finite horizon time-optimized model and the second one is based on an infinite horizon optimally scheduled model. We provide mathematical formulations for solving the discussed problem and present simulation results. Through a large number of experiments, we reveal the advantages of the proposed models and give numerical results comparing them with a deterministic model. These results indicate that the proposed models can efficiently reduce the required time for returning the final outcome to the user/application while keeping the quality of the aggregated result at high levels. © 2015 Elsevier Inc..en
dc.language.isoenen
dc.sourceBig Data Researchen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84946837818&doi=10.1016%2fj.bdr.2015.02.001&partnerID=40&md5=1389cb3e90fca4e55fd26b08c29f4cf3
dc.subjectDecision makingen
dc.subjectContinuous queriesen
dc.subjectData analyticsen
dc.subjectData driven decisionen
dc.subjectDecisions makingsen
dc.subjectEfficient timeen
dc.subjectOptimized modelsen
dc.subjectPartial resultsen
dc.subjectProgressive analyticen
dc.subjectResearch subjectsen
dc.subjectSequential time-optimized modelen
dc.subjectBig dataen
dc.subjectElsevier Inc.en
dc.titleAn Efficient Time Optimized Scheme for Progressive Analytics in Big Dataen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής