Εμφάνιση απλής εγγραφής

dc.creatorKarvelas E.G., Lampropoulos N.K., Karakasidis T.E., Sarris I.E.en
dc.date.accessioned2023-01-31T08:32:44Z
dc.date.available2023-01-31T08:32:44Z
dc.date.issued2022
dc.identifier10.1016/j.cmpb.2022.106916
dc.identifier.issn01692607
dc.identifier.urihttp://hdl.handle.net/11615/74551
dc.description.abstractBackground and objective: Serious side effects are occurred during the cancer therapy. Magnetic driving of nanoparticles is a novel method for the elimination of these effects by supplying with anticancer drug or increase the temperature of the infected area. For this reason, a numerical model for optimal guidance of nanoparticles, through the gradient magnetic field, inside the human artery system is presented in this study. Methods: The present method couples Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) techniques. In addition, the optimum magnetic intensity each time is evaluated by using the covariance matrix adaptation evolution strategy (CMA-ES). Under five feature blood flow velocities in cardiac cycle, the developed method evaluate and select the optimum gradient magnetic field in order to eliminate the deviation of the guided nanoparticles from a pre-described trajectory. Results: Results of the simulations indicate both the influence of the blood flow and the volume of nanocarriers in the magnetic driving process in real conditions. Specifically, the blood flow and the volume of particles are inversely proportional parameters in the magnetic navigation process. As the blood flow is decreased, the deviation of nanoparticles compared to the desired path is minimized. On the contrary, the decrease of the volume of nanocarriers increase the distance of particles from the described trajectory. However, greater magnetic gradient values are needed as the blood flow is increased. Furthermore, the imposed gradient magnetic values are strongly connected with the position of the nanoparticles and the blood blow velocity. Conclusions: Based on the results of the present study, the most important parameter in the navigation process is the magnetic volume of particles. Under real conditions, the effect of the blood flow is insignificant compared to the volume of particles in the navigation process. In addition, great differences in the optimized magnetic sequence are presented both among the different blood flows and the volume of particles. © 2022 Elsevier B.V.en
dc.language.isoenen
dc.sourceComputer Methods and Programs in Biomedicineen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85131126404&doi=10.1016%2fj.cmpb.2022.106916&partnerID=40&md5=34c283a0c16424c54d9590831fadadf0
dc.subjectBlooden
dc.subjectComputational fluid dynamicsen
dc.subjectCovariance matrixen
dc.subjectEvolutionary algorithmsen
dc.subjectFinite difference methoden
dc.subjectMagnetic fieldsen
dc.subjectNavigationen
dc.subjectOptimizationen
dc.subjectBlood flowen
dc.subjectCardiac cyclesen
dc.subjectCarotid arteryen
dc.subjectConditionen
dc.subjectFlow effectsen
dc.subjectGradient magnetic fielden
dc.subjectMagnetic drivingen
dc.subjectMagnetic navigationen
dc.subjectNanocarriersen
dc.subjectOptimization strategyen
dc.subjectHemodynamicsen
dc.subjectantineoplastic agenten
dc.subjectmagnetic nanoparticleen
dc.subjectnanocarrieren
dc.subjectartery diameteren
dc.subjectArticleen
dc.subjectblood flow velocityen
dc.subjectcarotid arteryen
dc.subjectcarotid artery flowen
dc.subjectcomputational fluid dynamicsen
dc.subjectcontrolled studyen
dc.subjectdiscrete element analysisen
dc.subjectheart cycleen
dc.subjecthumanen
dc.subjectmagnetic fielden
dc.subjectshear rateen
dc.subjectviscosityen
dc.subjectblood flow velocityen
dc.subjectcomputer simulationen
dc.subjecthemodynamicsen
dc.subjectmagnetismen
dc.subjectphysiologyen
dc.subjectBlood Flow Velocityen
dc.subjectCarotid Arteriesen
dc.subjectComputer Simulationen
dc.subjectHemodynamicsen
dc.subjectHumansen
dc.subjectMagnetic Fieldsen
dc.subjectMagneticsen
dc.subjectElsevier Ireland Ltden
dc.titleBlood flow and diameter effect in the navigation process of magnetic nanocarriers inside the carotid arteryen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής