dc.creator | Karas P.A., Perruchon C., Karanasios E., Papadopoulou E.S., Manthou E., Sitra S., Ehaliotis C., Karpouzas D.G. | en |
dc.date.accessioned | 2023-01-31T08:31:33Z | |
dc.date.available | 2023-01-31T08:31:33Z | |
dc.date.issued | 2016 | |
dc.identifier | 10.1016/j.jhazmat.2016.07.071 | |
dc.identifier.issn | 03043894 | |
dc.identifier.uri | http://hdl.handle.net/11615/74434 | |
dc.description.abstract | Wastewaters from fruit-packaging plants contain high loads of toxic and persistent pesticides and should be treated on site. We evaluated the depuration performance of five pilot biobeds against those effluents. In addition we tested bioaugmentation with bacterial inocula as a strategy for optimization of their depuration capacity. Finally we determined the composition and functional dynamics of the microbial community via q-PCR. Practical issues were also addressed including the risk associated with the direct environmental disposal of biobed-treated effluents and decontamination methods for the spent packing material. Biobeds showed high depuration capacity (>99.5%) against all pesticides with bioaugmentation maximizing their depuration performance against the persistent fungicide thiabendazole (TBZ). This was followed by a significant increase in the abundance of bacteria, fungi and of catabolic genes of aromatic compounds catA and pcaH. Bioaugmentation was the most potent decontamination method for spent packing material with composting being an effective alternative. Risk assessment based on practical scenarios (pome and citrus fruit-packaging plants) and the depuration performance of the pilot biobeds showed that discharge of the treated effluents into an 0.1-ha disposal site did not entail an environmental risk, except for TBZ-containing effluents where a larger disposal area (0.2 ha) or bioaugmentation alleviated the risk. © 2016 Elsevier B.V. | en |
dc.language.iso | en | en |
dc.source | Journal of Hazardous Materials | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991271402&doi=10.1016%2fj.jhazmat.2016.07.071&partnerID=40&md5=3e74afe970cbd18b9381599e6cd21683 | |
dc.subject | Citrus fruits | en |
dc.subject | Decontamination | en |
dc.subject | Effluents | en |
dc.subject | Fruits | en |
dc.subject | Packaging | en |
dc.subject | Pesticides | en |
dc.subject | Risk perception | en |
dc.subject | Wastewater disposal | en |
dc.subject | Wastewater treatment | en |
dc.subject | Bio-augmentation | en |
dc.subject | Biobeds | en |
dc.subject | Contaminated wastewater | en |
dc.subject | Fruit packaging | en |
dc.subject | Thiabendazole | en |
dc.subject | Risk assessment | en |
dc.subject | 2 hydroxybiphenyl | en |
dc.subject | aromatic compound | en |
dc.subject | diphenylamine | en |
dc.subject | enilconazole | en |
dc.subject | tiabendazole | en |
dc.subject | bacterium | en |
dc.subject | bioremediation | en |
dc.subject | composting | en |
dc.subject | depuration | en |
dc.subject | food processing | en |
dc.subject | fruit | en |
dc.subject | fungicide | en |
dc.subject | fungus | en |
dc.subject | industrial waste | en |
dc.subject | inoculation | en |
dc.subject | microbial community | en |
dc.subject | optimization | en |
dc.subject | performance assessment | en |
dc.subject | pesticide | en |
dc.subject | risk assessment | en |
dc.subject | wastewater treatment | en |
dc.subject | acute toxicity | en |
dc.subject | Article | en |
dc.subject | bioaugmentation | en |
dc.subject | biodegradation | en |
dc.subject | bioleaching | en |
dc.subject | catabolism | en |
dc.subject | chronic toxicity | en |
dc.subject | citrus fruit | en |
dc.subject | composting | en |
dc.subject | container | en |
dc.subject | effluent | en |
dc.subject | food industry | en |
dc.subject | food packaging | en |
dc.subject | fruit | en |
dc.subject | long term exposure | en |
dc.subject | microbial community | en |
dc.subject | nonhuman | en |
dc.subject | Oncorhynchus mykiss | en |
dc.subject | polymerase chain reaction | en |
dc.subject | Raphidocelis subcapitata | en |
dc.subject | risk assessment | en |
dc.subject | waste disposal | en |
dc.subject | waste water depuration | en |
dc.subject | waste water management | en |
dc.subject | bioreactor | en |
dc.subject | evaluation study | en |
dc.subject | food packaging | en |
dc.subject | industrial waste | en |
dc.subject | microbial consortium | en |
dc.subject | pilot study | en |
dc.subject | procedures | en |
dc.subject | sewage | en |
dc.subject | Bacteria (microorganisms) | en |
dc.subject | Citrus | en |
dc.subject | Fungi | en |
dc.subject | Bioreactors | en |
dc.subject | Food Packaging | en |
dc.subject | Industrial Waste | en |
dc.subject | Microbial Consortia | en |
dc.subject | Pilot Projects | en |
dc.subject | Risk Assessment | en |
dc.subject | Waste Disposal, Fluid | en |
dc.subject | Elsevier B.V. | en |
dc.title | Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: Bioaugmentation, risk assessment and optimized management | en |
dc.type | journalArticle | en |