Εμφάνιση απλής εγγραφής

dc.creatorKaramoutsou L., Psilovikos A.en
dc.date.accessioned2023-01-31T08:31:16Z
dc.date.available2023-01-31T08:31:16Z
dc.date.issued2021
dc.identifier10.3390/w13233364
dc.identifier.issn20734441
dc.identifier.urihttp://hdl.handle.net/11615/74407
dc.description.abstractThe effects of climate change on water resources management have drawn worldwide attention. Water quality predictions that are both reliable and precise are critical for an effective water resources management. Although nonlinear biological and chemical processes occurring in a lake make prediction complex, advanced techniques are needed to develop reliable models and effective management systems. Artificial intelligence (AI) is one of the most recent methods for modeling complex structures. The applications of machine learning (ML), as a part of AI, in hydrology and water resources management have been increasing in recent years. In this paper, the ability of deep neural networks (DNNs) to predict the quality parameter of dissolved oxygen (DO), in Lake Kastoria, Greece, is tested. The available dataset from 11 November 2015, to 15 March 2018, on an hourly basis, from four telemetric stations located in the study area consists of (1) Chl-a (µg/L), (2) pH, (3) temperature—Tw (◦C), (4) conductivity (µS/cm), (5) turbidity (NTU), (6) ammonia (NH4, mg/L), (7) nitrate nitrogen (N–NO3, mg/L), and (8) dissolved oxygen (DO) (mg/L). Feed-forward deep neural networks (FF-DNNs) of DO, with different structures, are tested for all stations. All the well-trained DNNs give satisfactory results. The optimal selected FF-DNNs of DO for each station with a high efficiency (NSE > 0.89 for optimal selected structures/station) constitute a good choice for modeling dissolved oxygen. Moreover, they provide information in real time and comprise a powerful decision support system (DSS) for preventing accidental and emergency conditions that may arise from both natural and anthropogenic hazards. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.language.isoenen
dc.sourceWater (Switzerland)en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85120157342&doi=10.3390%2fw13233364&partnerID=40&md5=1b3700c16b52513f272eba59e9018ac1
dc.subjectAmmoniaen
dc.subjectBiochemical oxygen demanden
dc.subjectClimate changeen
dc.subjectComplex networksen
dc.subjectDecision support systemsen
dc.subjectDeep neural networksen
dc.subjectDissolutionen
dc.subjectForecastingen
dc.subjectLakesen
dc.subjectStructural optimizationen
dc.subjectWater qualityen
dc.subjectBiological processen
dc.subjectCase-studiesen
dc.subjectChemical processen
dc.subjectDeep learningen
dc.subjectFeed forwarden
dc.subjectFeed-forward networken
dc.subjectLake kastoriaen
dc.subjectReliable modelsen
dc.subjectWater quality predictionsen
dc.subjectWater resources managementen
dc.subjectDissolved oxygenen
dc.subjectclimate changeen
dc.subjectdecision support systemen
dc.subjectresource managementen
dc.subjectspatiotemporal analysisen
dc.subjectwater managementen
dc.subjectwater resourceen
dc.subjectGreeceen
dc.subjectKastoriaen
dc.subjectLake Kastoriaen
dc.subjectWestern Macedoniaen
dc.subjectMDPIen
dc.titleDeep learning in water resources management: The case study of Kastoria lake in Greeceen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής