Εμφάνιση απλής εγγραφής

dc.creatorJia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B.en
dc.date.accessioned2023-01-31T08:28:59Z
dc.date.available2023-01-31T08:28:59Z
dc.date.issued2022
dc.identifier10.1016/j.ymssp.2021.108784
dc.identifier.issn08883270
dc.identifier.urihttp://hdl.handle.net/11615/74112
dc.description.abstractThe hierarchical Bayesian modeling (HBM) framework has recently been developed to tackle the uncertainty quantification and propagation in structural dynamics inverse problems. This new framework characterizes the ensemble variability of structural parameters observed over multiple datasets together with the estimation uncertainty obtained based on the discrepancy between the measured and model outputs. The present paper expands on this framework, developing it further for model inference based on modal features. It generalizes the HBM framework by considering an additional hyper distribution to characterize the uncertainty of prediction error variances across different datasets. Moreover, asymptotic approximations are integrated into the HBM framework to simplify the computation of the posterior distribution of hyper-parameters, providing insights on different sources of uncertainties and the relation of the estimates of the hyper-parameters with the parameter variability and estimation uncertainties. Conditions are presented under which the approximations are expected to be accurate. Introducing the HBM formulation is beneficial, particularly for the propagation of uncertainty based on both structural and prediction error parameters providing reasonable uncertainty bounds. The posterior uncertainty of the structural and prediction error parameters is propagated to estimate data-informed output quantities of interests, including failure probabilities, which offers robustness to the variability over datasets. The proposed approximations are tested and verified using simulated and experimental examples. The effects of the uncertainty due to dataset variability and the prediction error uncertainty are illustrated in these examples. © 2021 Elsevier Ltden
dc.language.isoenen
dc.sourceMechanical Systems and Signal Processingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123806096&doi=10.1016%2fj.ymssp.2021.108784&partnerID=40&md5=3ba44322deff18f4c304ec845dd0bc99
dc.subjectBayesian networksen
dc.subjectErrorsen
dc.subjectForecastingen
dc.subjectInverse problemsen
dc.subjectParameter estimationen
dc.subjectUncertainty analysisen
dc.subjectEstimation uncertaintiesen
dc.subjectHierarchical Bayesian modelingen
dc.subjectModal propertiesen
dc.subjectModel updatingen
dc.subjectModelling frameworken
dc.subjectParameter variabilityen
dc.subjectPrediction error uncertaintyen
dc.subjectPrediction errorsen
dc.subjectResponse predictionen
dc.subjectUncertaintyen
dc.subjectStructural dynamicsen
dc.subjectAcademic Pressen
dc.titleHierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal featuresen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής