Εμφάνιση απλής εγγραφής

dc.creatorJia X., Sedehi O., Papadimitriou C., Katafygiotis L.S.en
dc.date.accessioned2023-01-31T08:28:59Z
dc.date.available2023-01-31T08:28:59Z
dc.date.issued2020
dc.identifier.isbn9786188507210
dc.identifier.issn23119020
dc.identifier.urihttp://hdl.handle.net/11615/74111
dc.description.abstractA hierarchical Bayesian modeling (HBM) framework has recently been developed for estimating the uncertainties in the parameters of physics-based models of systems, as well as propagating these uncertainties to estimate the uncertainty in output quantities of interest. According to the framework, uncertainties due to model error are embedded into the model parameters by assigning a parameterized probability distribution and inferring the hyper-parameters of this distribution using multiple sets of experimental data. Herein the framework is extended to properly account for the uncertainty in the prediction error model. The error term is modeled by a Normal distribution with hyper parameters to be estimated by the multiple sets of data. This generalization allow making consistent uncertainty propagation for response quantities of interest. New asymptotic approximations for estimating the uncertainties in the hyper-parameters, as well as propagating these uncertainties to model parameters and observed and unobserved output quantities of interest are developed. The proposed framework provide realistic account of model uncertainties that are insensitive to large number of data sets, avoiding severe underestimation of uncertainty arising from conventional Bayesian learning techniques. Problems drawn from structural dynamics applications are used to demonstrate the effectiveness of the proposed framework. © 2020 European Association for Structural Dynamics. All rights reserved.en
dc.language.isoenen
dc.sourceProceedings of the International Conference on Structural Dynamic , EURODYNen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098692363&partnerID=40&md5=2b3155413af804cbb56030018e2852ce
dc.subjectBayesian networksen
dc.subjectDynamicsen
dc.subjectErrorsen
dc.subjectHierarchical systemsen
dc.subjectLearning systemsen
dc.subjectNormal distributionen
dc.subjectParameter estimationen
dc.subjectPredictive analyticsen
dc.subjectStructural dynamicsen
dc.subjectAsymptotic approximationen
dc.subjectComputationally efficienten
dc.subjectHierarchical Bayesian modelingen
dc.subjectModel uncertaintiesen
dc.subjectPhysics-based modelsen
dc.subjectPrediction errorsen
dc.subjectQuantities of interestsen
dc.subjectUncertainty propagationen
dc.subjectUncertainty analysisen
dc.subjectEuropean Association for Structural Dynamicsen
dc.titleComputationally efficient hierarchical Bayesian modeling framework for learning embedded model uncertaintiesen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής