Εμφάνιση απλής εγγραφής

dc.creatorHazarika H., Basnet D.K., Kapetanakis G.en
dc.date.accessioned2023-01-31T08:28:02Z
dc.date.available2023-01-31T08:28:02Z
dc.date.issued2022
dc.identifier10.1142/S0218196722500187
dc.identifier.issn02181967
dc.identifier.urihttp://hdl.handle.net/11615/73939
dc.description.abstractLet q be an even prime power and m ≥ 2 an integer. By q, we denote the finite field of order q and by qm its extension of degree m. In this paper, we investigate the existence of a primitive normal pair (α,f(α)), with f(x) = ax2+bx+c dx+e qm(x) where the rank of the matrix F = abc 0 d e M2×3(qm) is 2. Namely, we establish sufficient conditions to show that nearly all fields of even characteristic possess such elements, except for 1100 1 0 if q = 2 and m is odd, and then we provide an explicit small list of possible and genuine exceptional pairs (q,m). © 2022 World Scientific Publishing Company.en
dc.language.isoenen
dc.sourceInternational Journal of Algebra and Computationen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124410512&doi=10.1142%2fS0218196722500187&partnerID=40&md5=dcd85d3bb50cf15532f6faa611b6b64b
dc.subjectWorld Scientificen
dc.titleOn the existence of primitive normal elements of rational form over finite fields of even characteristicen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής