dc.creator | Hazarika H., Basnet D.K., Kapetanakis G. | en |
dc.date.accessioned | 2023-01-31T08:28:02Z | |
dc.date.available | 2023-01-31T08:28:02Z | |
dc.date.issued | 2022 | |
dc.identifier | 10.1142/S0218196722500187 | |
dc.identifier.issn | 02181967 | |
dc.identifier.uri | http://hdl.handle.net/11615/73939 | |
dc.description.abstract | Let q be an even prime power and m ≥ 2 an integer. By q, we denote the finite field of order q and by qm its extension of degree m. In this paper, we investigate the existence of a primitive normal pair (α,f(α)), with f(x) = ax2+bx+c dx+e qm(x) where the rank of the matrix F = abc 0 d e M2×3(qm) is 2. Namely, we establish sufficient conditions to show that nearly all fields of even characteristic possess such elements, except for 1100 1 0 if q = 2 and m is odd, and then we provide an explicit small list of possible and genuine exceptional pairs (q,m). © 2022 World Scientific Publishing Company. | en |
dc.language.iso | en | en |
dc.source | International Journal of Algebra and Computation | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124410512&doi=10.1142%2fS0218196722500187&partnerID=40&md5=dcd85d3bb50cf15532f6faa611b6b64b | |
dc.subject | World Scientific | en |
dc.title | On the existence of primitive normal elements of rational form over finite fields of even characteristic | en |
dc.type | journalArticle | en |