dc.creator | Gul I., Manzoor M., Hashim N., Shah G.M., Waani S.P.T., Shahid M., Antoniadis V., Rinklebe J., Arshad M. | en |
dc.date.accessioned | 2023-01-31T08:27:21Z | |
dc.date.available | 2023-01-31T08:27:21Z | |
dc.date.issued | 2021 | |
dc.identifier | 10.1016/j.envpol.2021.117667 | |
dc.identifier.issn | 02697491 | |
dc.identifier.uri | http://hdl.handle.net/11615/73732 | |
dc.description.abstract | Cadmium (Cd) and lead (Pb) are ubiquitously present in surface soils, due to anthropogenic activities, causing threat to ecological and human health because of their carcinogenic nature. They accumulate in large quantities in the environment and affect negatively soil microbiota, plants, animals, and humans. For the cleanup of Cd/Pb polluted soils, different plant species have been studied. Many plants have shown the potential to hyperaccumulate Cd/Pb in their above-ground tissues. These plants decrease soil pH by root exudation or by releasing H+ ions, and this, in turn, increases the bioavailability of Cd/Pb for plant uptake. Different environmental processes related to soil organic matter, microorganisms, pH, genetic modifications, and various soil-borne chelating agents affect the potential of phytoremediation technology. Review papers trying to identify a single factor influencing the phytoremediation of heavy metals are available in the literature. However, an integrated approach dealing with different factors involved in the remediation of both metals is scarcely discussed. The main focus of this review is to discuss the phytoextraction technique for Cd/Pb removal from contaminated sites along with detoxification mechanisms. Further, the challenges in the Cd/Pb phytoextraction and different options available to cope with these challenges are also discussed. The update on the relevant findings on the use of microorganisms and amendments in enhancing the Cd/Pb phytoextraction is also provided. Finally, the areas to be explored in future research for the removal of Cd/Pb by integrated strategies have been discussed. © 2021 Elsevier Ltd | en |
dc.language.iso | en | en |
dc.source | Environmental Pollution | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109567109&doi=10.1016%2fj.envpol.2021.117667&partnerID=40&md5=dd8421b3c362fad88ac7be43e2b724f0 | |
dc.subject | Biochemistry | en |
dc.subject | Cadmium | en |
dc.subject | Chelation | en |
dc.subject | Detoxification | en |
dc.subject | Health risks | en |
dc.subject | Lead | en |
dc.subject | Microorganisms | en |
dc.subject | Soil pollution | en |
dc.subject | Soils | en |
dc.subject | Anthropogenic activity | en |
dc.subject | Cadmium and leads | en |
dc.subject | Chelating agent | en |
dc.subject | Ecological health | en |
dc.subject | Human health | en |
dc.subject | Lead | en |
dc.subject | Microbial interactions | en |
dc.subject | Phytoextraction | en |
dc.subject | Phytoremediation | en |
dc.subject | Surface soil | en |
dc.subject | Bioremediation | en |
dc.subject | ammonium nitrate | en |
dc.subject | amyloid precursor protein | en |
dc.subject | cadmium | en |
dc.subject | chelating agent | en |
dc.subject | chlorophyll | en |
dc.subject | chlorophyll a | en |
dc.subject | essential oil | en |
dc.subject | fertilizer | en |
dc.subject | hemicellulose | en |
dc.subject | humic acid | en |
dc.subject | lead | en |
dc.subject | phytohormone | en |
dc.subject | proton | en |
dc.subject | soil organic matter | en |
dc.subject | cadmium | en |
dc.subject | lead | en |
dc.subject | cadmium | en |
dc.subject | chelate | en |
dc.subject | chelating agent | en |
dc.subject | concentration (composition) | en |
dc.subject | lead | en |
dc.subject | microbial activity | en |
dc.subject | phytoremediation | en |
dc.subject | phytotoxicity | en |
dc.subject | soil pollution | en |
dc.subject | abiotic stress | en |
dc.subject | aquatic environment | en |
dc.subject | bioaccumulation | en |
dc.subject | bioavailability | en |
dc.subject | bioleaching | en |
dc.subject | biomass production | en |
dc.subject | biomineralization | en |
dc.subject | bioremediation | en |
dc.subject | biosorption | en |
dc.subject | biotransformation | en |
dc.subject | cell wall | en |
dc.subject | chlorophyll content | en |
dc.subject | composting | en |
dc.subject | detoxification | en |
dc.subject | electric conductivity | en |
dc.subject | enzyme activity | en |
dc.subject | food contamination | en |
dc.subject | food industry | en |
dc.subject | microbial community | en |
dc.subject | microbial interaction | en |
dc.subject | nanotechnology | en |
dc.subject | nonhuman | en |
dc.subject | nucleotide sequence | en |
dc.subject | oxidation reduction potential | en |
dc.subject | oxidative stress | en |
dc.subject | pH | en |
dc.subject | photosynthesis | en |
dc.subject | phytoextraction | en |
dc.subject | phytotoxicity | en |
dc.subject | protein processing | en |
dc.subject | protein stability | en |
dc.subject | Review | en |
dc.subject | soil acidity | en |
dc.subject | soil fertility | en |
dc.subject | soil microflora | en |
dc.subject | soil pollution | en |
dc.subject | soil quality | en |
dc.subject | surface soil | en |
dc.subject | symbiosis | en |
dc.subject | temperature | en |
dc.subject | human | en |
dc.subject | soil | en |
dc.subject | soil pollutant | en |
dc.subject | Microbiota | en |
dc.subject | Biodegradation, Environmental | en |
dc.subject | Cadmium | en |
dc.subject | Humans | en |
dc.subject | Lead | en |
dc.subject | Soil | en |
dc.subject | Soil Pollutants | en |
dc.subject | Elsevier Ltd | en |
dc.title | Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead – A review | en |
dc.type | other | en |