Εμφάνιση απλής εγγραφής

dc.creatorDobri A., Tsiantis A., Papathanasiou T.D., Wang Y.en
dc.date.accessioned2023-01-31T07:57:33Z
dc.date.available2023-01-31T07:57:33Z
dc.date.issued2021
dc.identifier10.1016/j.ijheatmasstransfer.2021.121389
dc.identifier.issn00179310
dc.identifier.urihttp://hdl.handle.net/11615/73392
dc.description.abstractThis paper presents a semi-analytical model to describe the transient heat transfer in phase change material (PCM)-based composites. One such example is micro-encapsulated paraffin in gypsum plaster walls for building applications. Without the availability of an analytical solution for the problem at hand, and given the computational intensity of full-scale numerical solution of the problem, there is a need for alternate approaches that can be used in the design of PCM walls. The key assumption underlying the proposed model is that the spherical paraffin particles are small enough relative to the thickness of the wall, and therefore at each time instant each particle is surrounded by a spatially uniform, albeit time-dependent matrix temperature. This evolving matrix temperature is used as a boundary condition in order to solve for the analytical temperature distribution at the particle-scale, from which the heat flow into the particle can be determined. This procedure avoids spatial discretization of the micro-scale and results in a macro-scale model in which the paraffin particles appear as sinks/sources at each nodal point. The heat equation is then solved using the Method of Lines, which reduces a parabolic partial differential equation into a set of ordinary differential equations. The proposed model is used to simulate the constant flux wall conditions often seen in thermal characterization experiments of PCM walls and structures. Simulation results elucidate the impact of the particle radius and interfacial resistance on the transition at the end of the thermal management phase. Simulations of cyclic environmental temperatures more relevant to building applications show that PCM volume loadings as low as 5% can reduce the energy demands of an HVAC system by 15 to 20%. Moreover, the model is also shown to provide excellent agreement with the work of Šavija and Schlangen, who simulated the transient thermal response of hardening concrete using the commercial finite element package FEMMASSE. © 2021 Elsevier Ltden
dc.language.isoenen
dc.sourceInternational Journal of Heat and Mass Transferen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85111016209&doi=10.1016%2fj.ijheatmasstransfer.2021.121389&partnerID=40&md5=da255bca528ddcea3ff7d1d21912cc99
dc.subjectAnalytical modelsen
dc.subjectBoundary conditionsen
dc.subjectOrdinary differential equationsen
dc.subjectPhase change materialsen
dc.subjectTransient analysisen
dc.subjectWalls (structural partitions)en
dc.subjectBuilding applicationsen
dc.subjectMatrix temperaturesen
dc.subjectMulti-scale compositesen
dc.subjectNumerical heat transferen
dc.subjectPhase Changeen
dc.subjectPhase change materialen
dc.subjectPhase change material wallen
dc.subjectSemi-analytical modelen
dc.subjectTransient heat transferen
dc.subjectTransient thermal responseen
dc.subjectHeat transferen
dc.subjectElsevier Ltden
dc.titleInvestigation of transient heat transfer in multi-scale PCM composites using a semi-analytical modelen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής