Εμφάνιση απλής εγγραφής

dc.creatorDobri A., Papathanasiou T.D.en
dc.date.accessioned2023-01-31T07:57:31Z
dc.date.available2023-01-31T07:57:31Z
dc.date.issued2020
dc.identifier10.3390/fluids5010003
dc.identifier.issn23115521
dc.identifier.urihttp://hdl.handle.net/11615/73390
dc.description.abstractDirect modeling of time-dependent transport and reactions in realistic heterogeneous systems, in a manner that considers the evolution of the quantities of interest in both, the macro-scale (suspending fluid) and the micro-scale (suspended particles), is currently well beyond the capabilities of modern supercomputing. This is understandable, since even a simple system such as this can easily contain over 107 particles, whose length and time scales differ from those of the macro-scale by several orders of magnitude. While much can be gained by applying direct numerical solution to representative model systems, the direct approach is impractical when the performance of large, realistic systems is to be modeled. In this study we derive and analyze a “hybrid” model that is suitable for fibrous reactors. The model considers convection/diffusion in the bulk liquid, as well as intra-fiber diffusion and reaction. The essence of our approach is that diffusion and (first-order) reaction in the intra-fiber space are handled semi-analytically, based on well-established theory. As a result, the problem of intra-fiber transport and reaction is reduced to an easily solvable set of n0 ODEs, where n0 is the number of terms in the Bessel expansion evaluated without recourse to approximation; this set is coupled, point-wise, with a numerical model of the macro-scale. When the latter is discretized using N nodes, the total “hybrid” model for the system consists of a system of N(2 + n0) ODEs, which is easily solvable on a modest workstation. Parametric analyses are presented and discussed. © 2019 by the authorsen
dc.language.isoenen
dc.sourceFluidsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078591222&doi=10.3390%2ffluids5010003&partnerID=40&md5=afefbf33c39c06bcb872212cc0e11c2b
dc.subjectMDPI AGen
dc.titleMulti-scale modeling of the dynamics of a fibrous reactor: Use of an analytical solution at the micro-scale to avoid the spatial discretization of the intra-fiber spaceen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής